
Formal Analysis of SPDM:
Security Protocol and Data Model version 1.2

Cas Cremers
CISPA Helmholtz Center
for Information Security

Alexander Dax
CISPA Helmholtz Center
for Information Security

Aurora Naska
CISPA Helmholtz Center
for Information Security

Abstract
DMTF is a standards organization by major industry play-
ers in IT infrastructure including AMD, Alibaba, Broad-
com, Cisco, Dell, Google, Huawei, IBM, Intel, Lenovo, and
NVIDIA, which aims to enable interoperability, e.g., includ-
ing cloud, virtualization, network, servers and storage. It is cur-
rently standardizing a security protocol called SPDM, which
aims to secure communication over the wire and to enable
device attestation, notably also explicitly catering for commu-
nicating hardware components.

The SPDM protocol inherits requirements and design ideas
from IETF’s TLS 1.3. However, its state machines and tran-
script handling are substantially different and more complex.
While architecture, specification, and open-source libraries
of the current versions of SPDM are publicly available, these
include no significant security analysis of any kind.

In this work we develop the first formal models of the three
modes of the SPDM protocol version 1.2.1, and formally
analyze their main security properties.

1 Introduction

The Distributed Management Task Force (DMTF) [24] is an
industry standards organization for IT infrastructures (notably
cloud, virtualization, network, servers and storage) whose
board and members include AMD, Alibaba, Broadcom, Cisco,
Dell, Google, Huawei, IBM, Intel, Lenovo, NVIDIA, Verizon,
and VMware. One of its main goals is to provide common
solutions that enable products in this domain to interoperate.

One of DMTF’s most recent standards is the Security Pro-
tocol and Data Model (SPDM) security protocol for the broad
device community, aiming to provide end-to-end trust for
infrastructure including chip-to-chip, channels between com-
ponents, and for various server platforms [47]. Many other
standards groups have adopted SPDM, including Compute
Express Link (CXL) [21], Peripheral Component Interconnect
(PCI) [46], Mobile Industry Processor Interface (MIPI) [43],
and the Trusted Computing Group (TCG) [49].

The current version, SPDM version 1.2.1 [25, 26], has two
main goals: securing communication over the wire, and device
attestation. With respect to securing communication over the
wire, SPDM shares many high-level requirements with IETF’s
TLS 1.3 [48] and DTLS, including cipher suite and version
negotiation, unilateral and mutual authentication based on
certificates or preshared keys, and confidentiality based on
key exchange and key update. In the context of SPDM, de-
vice attestation essentially amounts to support for a generic
challenge-response mechanism, which can then be instanti-
ated by specific stakeholders as required.

In its specification, SPDM is typically presented using an
abstracted message sequence chart that suggests that it is es-
sentially a single flow with six back-and-forth rounds, some
of which are optional. However, the actual state machines
defined by the standard are much more complex, and allow
various types of loops, negotiations, optional flows, session
resets, and delayed authentication processes. Furthermore, it
uses message transcripts in a non-standard way, by using sev-
eral different filtered transcripts. As a consequence, the com-
plexity of its state machines exceeds even those of TLS 1.3.

In terms of security analysis, the only information that is
available is in the white paper [25, p. 13–15], which includes
a three-page “threat model” section. It describes a STRIDE
analysis and lists mitigations such as “To prevent attacks,
use one or more of these strategies as supported by the end-
point components: Stronger authentication schemes; Versions;
Cryptographic algorithms”.

Given the industry support behind this protocol, and its po-
tential use across backend device vendors, this type of analysis
may appear very limited compared to the successful approach
used by IETF for TLS 1.3, which expressly invited interaction
between design and formal analysis [45] and caught several
potential flaws early in the design process.

In this work, we set out to provide a first formal analysis
of the three handshake modes of the Security Protocol and
Data Model (SPDM) protocol, and in particular focus on the
current version 1.2.1 [26]. As we will show later, this is ex-
tremely challenging for a number of reasons: (i) While the

protocol borrows heavily from TLS 1.3’s design decisions, its
main state machines and transcript handling are substantially
different from, and more complex than, TLS 1.3. Notably,
this means that the substantial analysis effort performed for
TLS 1.3, e.g. [1,5–8,10,11,18,19,22,23,27–30,34,35,38–40],
provides absolutely no security guarantees for SPDM. Thus,
all analysis has to be performed from scratch. (ii) The SPDM
specification provides only very informal security goals and a
high-level STRIDE analysis. (iii) A complete detailed mod-
eling of the combination of complex transcripts and loops
seems to stretch the limits of current protocol analysis tools.

Our main contributions are as follows:

• We construct the first formal models of the SPDM pro-
tocol, using the current version 1.2.1 as the reference
point.

• We formally analyze our models using the TAMARIN
prover [42], proving several of its core properties under
specific threat models. Our models include device initial-
ization, the four phases of the protocol, its three modes
of key exchange and session setup, and the optional re-
quests performed outside a secure session. Our results
are the first substantial security analysis results for the
SPDM protocol.

• Our formal modeling and analysis leads to several sug-
gestions for next versions of the standard, as well as
potential design pitfalls.

We provide all our annotated models for reproducibility, in-
spection, and extension at [16].

Paper Organization This paper is organized as follows: In
Section 2 we describe the main components of the SPDM
protocol, and give an overview of the tool used for the formal
analysis, the TAMARIN prover. In Section 3 we outline our
formal models of SPDM and our design choices. Then, we
formalize the security properties and show the results of our
analysis in Section 4. Next, we discuss wider observations
in Section 5, and conclude in Section 6. Finally, we provide
details of the protocol’s transcripts in Appendix A.

Further Related Work As stated previously, while the re-
lated TLS 1.3 protocol has been extensively investigated [1,5–
8,10,11,18,19,22,23,27–30,34,35,38–40], there currently is
no meaningful security analysis of the SPDM protocol avail-
able beyond a three-page STRIDE analysis [25, p. 14]. In
comparison to TLS 1.3 [48], SPDM has very different state
machines and transcript handing, which in turn make previous
analysis of TLS 1.3 not transferable to SPDM. In particular,
SPDM heavily uses transcripts to sign and verify the current
protocol run, and derive HMAC keys, in addition to the hand-
shake key derivation like in TLS 1.3. In addition, the looping
behaviors of SPDM, where one party can spawn multiple par-
allel sessions and still go back the protocol steps to exchange

certificates, required completely new models without reusing
any parts, structure, or lemmas of the TLS models.

With respect to tool choice, we use the TAMARIN
prover [42] to model and prove properties of SPDM, because
it had been successfully used to verify case studies for sim-
ilarly complex protocols like EMV [4], TLS 1.3 [18, 19],
5G [3, 17], and WPA2 [20]. The only tool that might be appli-
cable to achieve similar results would be ProVerif. We expect
ProVerif to similarly struggle with the composition of the
larger components based on the timelines of the TLS 1.3 anal-
yses in Tamarin and ProVerif, and with similar amounts of
manual effort. It is unclear how to predict the performance of
these tools on specific large models without going through the
full effort of modeling them. To the best of our knowledge,
no other automated protocol analysis tools have been applied
to protocols of similar complexity.

A blocking factor in the scalability of protocol analysis is a
lack of composition results that apply to fine-grained models
of real-world protocols. Some later compositionality results in
symbolic setting include [13] (which does not apply to SPDM
or TLS since their sub-protocols share primitives, such as
HMAC) and [31] (targets a different composition problem,
and was proven only for more restrictive models than ours),
and [32] (whose preconditions are not met by SPDM, and
holds for similarly restricted models).

In [50], the authors consider what changes need to be made
to the SPDM protocol to use post-quantum secure primitives.
This largely involves selecting post-quantum secure versions
of underlying primitives, except for the key exchange. Be-
cause SPDM’s key exchange is based on Diffie-Hellman, for
which currently no practical post-quantum secure drop-in re-
placement is known, the authors propose a new key exchange
for SPDM based on a Key-Encapsulation Mechanism (KEM).
They note that their key exchange design is similar to a KEM-
based key exchange proposed for TLS 1.3, and leave security
analysis to future work.

2 Background

In this section we provide background on the SPDM protocol
in Section 2.1 and on the protocol analysis tool (the TAMARIN
prover) in Section 2.2.

2.1 Background on SPDM

Security Protocol and Data Model (SPDM) is a two-party
protocol between a Requester that initiates the conversation
and the Responder. SPDM aims to achieve two major security
goals: device attestation and authenticated, secure commu-
nication. Enabling device attestation is explained in presen-
tations as “the ability to attest various aspects of a device
(Responder) such as firmware integrity and device identity”
to a Requester. The second goal is similar to TLS’s secu-

rity goals: establishing an authenticated, secure channel to
exchange data between two parties over the wire.

The protocol can be viewed as a composition of four phases:
the Device Initialization phase, the Version-Capabilities-
Algorithms (VCA) phase, then a phase we refer to as the
Options phase, and finally the Session phase.

(i) Device Initialization phase The Device Initialization
phase is performed outside of the protocol and initial-
izes devices with their cryptographic capabilities and the
initial protocol implementation.

(ii) VCA phase The Version-Capabilities-Algorithms phase
serves to initiate the protocol and negotiate ciphersuites
and protocol versions between participants.

(iii) Options phase The Options phase enables the parties
to perform unilateral Responder authentication and at-
test aspects of the Responder device through so-called
measurements, the mutable configurations of the Re-
sponder’s device. As these requests depend on device
initialization outside of the protocol and the goals of the
Requester, we call this part of the protocol options phase.
The Requester can skip directly to the session phase, by
sending a key exchange request after the VCA.

(iv) Session phase The Session phase establishes a secure
and/or authenticated communication session between
the parties to exchange application data. The phase is
constructed from three sub-phases, the handshake, the
application data, and the key update. During the hand-
shake, the parties derive the session key using a key
exchange based on Diffie-Hellman or preshared sym-
metric keys. By default the key exchange provides uni-
lateral authentication of the Responder, and to elevate
the connection to mutual authentication, the Responder
needs to explicitly request it. During the application data
sub-phase, the parties exchange data encrypted using an
authenticated encryption with associated data (AEAD)
scheme as specified in the architecture whitepaper [25].
In addition, the standard specifies that the parties shall
regularly run a key update mechanism.

In Figure 1 we show an overview of the four phases of
SPDM and the sub-phases of each new session. We will now
give a more in-depth description of the SPDM processes.

Device Initialization Before the start of the protocol, par-
ties receive their initial protocol code and cryptographic ma-
terial during the device initialization. This initial setup should
be performed in a secure and trusted environment, e.g., at the
device manufacturer.

The general setup includes: a unique device identifier, the
SPDM protocol implementation itself, and information on
supported protocol versions, relevant capabilities, and crypto-
graphic algorithms. For the protocol version, DMTF addition-

•

Initialization

VCA

VCA Options

New Session

(a) High-level view of the four phases of SPDM’s main process: Device
Initialization, VCA phase, Options phase, and creation of New Sessions.

•

•

Key Exchange

CertificatesPub. KeysSymm. Keys

Key Update

Terminate

Data Exchange

(b) High-level view of the sub-phases of each New Session.

Figure 1: High-level views of SPDM’s protocol flow: (a)
connections of the different main phases, and (b) interaction
between sub-phases of the session phase. Note that multiple
sessions can be spawned concurrently for each SPDM run.

ally defines which request and response codes are required to
be implemented. Request and response codes define format
and type of the sent messages during the protocol and are
listed in [26, p. 33–36]. Additionally, the initialization should
at least include one of the following:

(i) preshared symmetric keys with another device (possibly
multiple),

(ii) preshared public keys with another device, or
(iii) a public key pair, certificates over the public key, and a

root of trust to verify certificates.

Option (i) and (ii) need to be set up with predetermined
communication partners. For both options, there is no fixed
upper limit of shared keys. For option (iii), a device can
store up to 8 certificates in ASN.1 DER-encoded X.509 v3
format as defined in [14]. The initial one (certificate slot
0), however, should only be set or altered in a secure and
trusted environment. For the other 7 slots, SPDM offers
means to retrieve a certificate signing request [44] from a
Responder, and set the certificate remotely using GET_CSR

and SET_CERTIFICATE. While the specification states that
SET_CERTIFICATE should only be issued in a secure ses-
sion, there is no detailed information on what that entails.

Additionally, during the initialization vendors can define
and implement their own request and response, which is al-
lowed through the optional “vendor defined functionality”.

VCA and Connection Establishment In the VCA phase,
the parties exchange protocol versions, discover their partner’s
capabilities, and the supported algorithms. To bootstrap the
protocol, the Requester sends the initial version request to
learn which versions the Responder supports. After receiving
the response, the Requester decides on the version for this
protocol run. According to the specification, this should be
the highest version that is supported by both parties.

Each party has a set of capabilities, which define the sup-
ported operations of the SPDM specifications, for instance, if
a party supports certificates, it sets and sends the CERT_CAP
flag. After exchanging capabilities, both parties store the com-
mon subset of the exchanged capabilities.

Finally, the parties exchange the algorithms that they sup-
port: concretely, this is a list of supported cryptographic al-
gorithms, like signature or encryption schemes. Intuitively,
the strongest available cryptographic algorithms should be
chosen, but the standard does not prescribe a selection mech-
anism.

During the VCA phase, the parties also maintain a tran-
script of their conversation, i.e., all received and sent messages,
see Appendix A for more details.

Device attestation through Measurements In practice, the
attestation mechanism boils down to a challenge-response
mechanism that is optionally authenticated: the requester
can ask the responder for so-called measurements, sending
a nonce along with the measurement request; the responder
responds with a bitstring that represents the measurement or a
set of measurements. The response is not specified in SPDM,
but envisioned to be, e.g., some hash of the device state, cer-
tain software versions or any other user- or manufacturer-
defined function.

In both public key settings, these measurements can op-
tionally be authenticated by using digital signatures, if this
capability is supported by the communicating parties. In the
case of preshared symmetric keys, it is not possible to request
measurements explicitly at this point, but they can be part of
the PSK exchange later on.

Runtime Responder Authentication When establishing a
connection using non-preshared keys for the first time, the par-
ties do not have cryptographic information about each other
to perform authentication mechanisms. To this end, SPDM
allows the Requester to obtain a public key and certificate

from their partner, i.e., option (iii) of device initialization, to
be used in the protocol run.

The Requester can then challenge the Responders knowl-
edge of the private key associated to the certificate by re-
questing a signature of the communication transcript and a
random Requester chosen nonce. Details on the transcript
computation can be found in [26], line 355.

Additionally, if the certificate was stored already in a pre-
vious session, the Requester can instead request a digest of
the Responder’s certificate for comparison (GET_DIGESTS).
The specification recommends to perform unilateral Respon-
der authentication using CHALLENGE at least once before
performing device attestation through measurements.

Key Exchange Parties that support digital signatures and
public key cryptography can start a Diffie-Hellman based key
exchange to derive the session secret. During this phase, they
also authenticate each other either by a) using preshared pub-
lic keys, b) stored certificates, e.g. from a previous protocol
run, or c) explicitly requesting their partner’s certificates. Fig-
ure 2 shows how the key exchange between Requester and
Responder is executed in the latter case.

To start the session phase, the Requester generates an
ephemeral public key pair, a session id, and a random nonce
and sends them with a key exchange request to the Respon-
der. Symmetrically, the Responder also generates its own
ephemeral key pair, session id, and random nonce and sends
them in the reply with a signature and a message authentica-
tion code (MAC) of the transcript so far. A transcript is the
concatenation of all exchanged messages in a specific order.
For details on how the transcripts and the MAC’s keys (also
called finished keys) are constructed, we refer to Figure 5.

Note that the Responder needs to indicate if they wish to
mutually authenticate the Requester by sending a flag in their
reply. At the end of the protocol, they derive session keys and
enter the application data exchange phase.

PSK Key Exchange The preshared key exchange (PSK) is
intended for parties that have been provisioned a preshared
symmetric key, and want to bootstrap secure and authenti-
cated data exchange. To this end, the handshake serves to
verify and prove knowledge of the shared key, thus implicitly
authenticating themselves, and derive a unique session secret.

The Requester shows its intent to start the key exchange
by sending the PSK_EXCHANGE request with a 32-bit ran-
dom nonce or counter. From the specifications, if the parties
have multiple preshared secrets, the request includes the slot
ID of the intended key. Upon processing this message, the
Responder can decide to either contribute in the session key
derivation with their own nonce or immediately derive the
session key and enter the data exchange phase. In the latter
case, the parties can skip the finish messages.

However, when the Responder replies with their own
nonce, they also authenticate the transcript of the protocol

so far. At this point, all subsequent messages (including the
PSK_EXCHANGE_RSP) until the end of the protocol need
to be encrypted using the handshake secret as stated in [26],
line 478. When completing the key exchange finish, the par-
ties derive the session keys from the transcript and the initial
shared secret (see Figure 5).

Mutual Authentication Explicit mutual authentication
needs to be requested by the Responder when the parties
are initialized with certificates and preshared public keys,
by sending a flag, MutAuthRequested, in their key exchange
reply. Depending on this flag’s value, they can trigger the
authentication mechanism with encapsulated flow or directly
skip to the finish. The latter is desirable when they have al-
ready obtained the certificate from another protocol run or the
parties have preshared public keys.

Requester Responder

VCA phase

Options phase

KEY_EXCHANGE,v,nonce1,sid1,ga

KE_RESP,v,nonce2,sid2,gb,sign(TH1, ltkResp),hmac(TH1, fkResp),MutAuth

D_Encap_Resp(DIGEST,v,h(certReq))

Encap_Resp_Ack(GET_CERTIFICATE,v)

D_Encap_Resp(CERTIFICATE,v,certReq)

Encap_Resp_Ack(v)

FINISH,v,sign(TH2, ltkReq),hmac(TH2, fkReq)

FINISH_RESP,v,hmac(TH2, fkResp)

Figure 2: Key Exchange with Mutual Authentication in the
optimized encapsulation flow. In the FINISH message, if Mu-
tual Authentication is requested (MutAuth), the Responder
can request digests and certificates for the Requester’s public
key using encapsulated messages. Additionally, the Requester
does sign the transcript TH2 (which is marked in blue.) If the
Responder already has the certificate of the Requester from
another protocol run, they can skip directly to FINISH.

During a specific protocol run, the Requester role always
has the initiative while the Responder role should only re-
spond. However, this is not always desired: to ensure certain
security goals, for instance, mutual authentication, the Respon-
der needs to retrieve their partner’s public key, and certificate.
The protocol uses dedicated messages for this purpose, e.g.,
ENCAPSULATED_REQUEST , and we show an example in-

formation flow of the mutual authentication mechanism in
Figure 2.

Key Update When already in the application phase, the
parties can update their session secrets instead of starting a
new handshake. The update mechanism has two potential
ways to update the keys: either the sender updates their own,
or all the keys of the session.

To update their own key, the Requester sends a key
update request (KEY_UPDATE) and upon acknowledgment
forwards their session major secret, msk using a key deriva-
tion function HKDF: mski+1 = HKDF(mski,

′ upd′,′ 0′).
From this, the new encryption key is derived as
enckey = HMAC(mski+1,

′ key′). Then, to verify the key
update it encrypts a request with the new key. Upon
decrypting the message, the Responder deletes the old keys
and encrypts the acknowledgment response. At this point
the parties exit the key update mechanism and enter the
application phase with the updated session major secret and
new encryption key.

Note that when the Requester updates all keys, major
secrets of both parties will be updated, and the Respon-
der needs to encrypt the verify acknowledgement using
their new encryption key. In addition, when the Respon-
der wishes to update the secrets, the same protocol flow
will be followed. However, instead of sending a key up-
date request the latter uses the encapsulated messages e.g.
ENCAPSULATED_REQUEST(KEY_UPDATE(...)).

Threat modeling and mitigations The publicly available
SPDM documentation includes one part about threat mod-
eling and mitigations in the architecture whitepaper [25, p.
13–15]. The threat model on page 13 draws the trust boundary
between the requester and responder, across the communica-
tion channels; yet denotes the channels as “secure request”
and “secure response”. Pages 14 and 15 contain a STRIDE
analysis table; we show an excerpt in the full version [15].

2.2 The Tamarin Prover
We set out to prove formal security guarantees for SPDM
using the TAMARIN prover [42]. The TAMARIN prover is
a state-of-the-art tool to verify and analyze complex secu-
rity protocols. It is especially suited for protocols featur-
ing various cryptographic primitives and constructions, like
Diffie-Hellman, digital signatures, and symmetric encryption.
TAMARIN operates in the symbolic model, where bit strings
are abstracted to symbolic terms.

TAMARIN takes as input a model of the protocol, the de-
scription of an attacker and the property that we wish to prove.
To formally model a protocol, we express its possible tran-
sitions using Multiset Rewriting Rules (MSR rules). Such a
rule is usually written in the form LHS—

[
Actions

]
→ RHS,

and has three parts: a) a Left-Hand Side (LHS) which checks

and possibly consumes facts needed to trigger the transition,
b) action facts (Actions), to log an action label that is used
to later on reference the transition, and c) a Right-Hand Side
(RHS), which produces facts for the final state after the tran-
sition. In TAMARIN, facts are used to denote state knowledge,
e.g., to represent the current state of a party in a protocol run.
TAMARIN has several built-in facts: The In and Out facts
model the receiving and sending of messages on the network.
The built-in fact Fr models the fresh generation of nonces,
which are uniquely instantiated. Additionally, TAMARIN dis-
tinguishes between two kinds of facts: linear and persistent
facts. While linear facts, like Fr, are consumed by rules, per-
sistent facts, prefixed with a “!”, will never be removed from
a state. For more intuition, consider the following rule:[

!Device(oid, · · ·),Fr(ltk)
] }

LHS

—
[
LongTermSecret(oid, ltk)

]
→

}
Actions[

!LTK(oid, ltk), !PK(oid,pk(ltk)),

Out(pk(ltk))
] }

RHS

The above rule is enabled if a device wants to create a
new long-term key. Given a persistent Device fact, a unique
long-term key ltk is created and bound to the oid of the device,
by the action fact LongTermSecret. The rule creates two ad-
ditional persistent facts, LTK and PK, adding the long-term
key and its corresponding public key to the global state, re-
spectively. With the Out fact, the public key is send out to the
network, making it therefore “public”.

One can add rules to model the intended attacker, such
as “leaking” the secret keys of an honest party to the net-
work. TAMARIN provides a base attacker, informally known
as Dolev-Yao, which has complete control over the network
and can drop, inject and insert messages. For this, TAMARIN
has another built-in factK, which represents the current knowl-
edge of the attacker/network.

To specify a property we write guarded first-order logic
formulas such as:

¬∃ oid ltk i j . LongTermSecret(oid , ltk)@i ∧ K(ltk)@j

This is a reachability lemma, and expresses that there
should not exist a trace of the model that includes the action
fact LongTermSecret over some long-term key ltk at some
time point i while the same key is known by the attacker at
some other point j.

For each lemma, TAMARIN will either provide a proof of
the property, an attack trace which falsifies it, or not terminate
and timeout. In the latter case, users can use the interactive
mode of the tool to debug the model and gain insight on how
to guide the prover, for example by introducing additional
helper lemmas. In addition to helper lemmas, one can define
restrictions, specified as guarded first-order logic formulas,
which reduce the search space of TAMARIN during a proof.

For more information we refer the reader to TAMARIN’s
documentation [2].

3 Formal Model of SPDM v1.2.1

In this section we describe our formal modeling approach of
the SPDM protocol. Because of the size and complexity of
the protocol, we split the analysis into four TAMARIN models.
This is an inherent limitation of the current scalability of
the analysis tools, and as we will see later, our split models
already push the boundary of what can be realistically handled
by state-of-the-art tools. We tried to reduce the impact of this
modularization by identifying naturally distinct cases in the
protocol flow, and identified five main components:

A Device initialization and the VCA phase (Section 3.1),
B Options phase (Section 3.2),
C Session handling (Section 3.3),
D Three different key exchanges (Section 3.4), and
E Application data exchange and termination (Section 3.5).

We use these components to create four models:

• Device Attestation, includes device initialization, VCA
and the options phase (A,B).

• Key Exchange Certificate, includes device initializa-
tion, VCA, the key agreement with certificates, and ap-
plication data (A,C,D1,E).

• Key Exchange Preshared Public Keys, includes device
initialization, VCA, the key agreement with public keys,
and application data (A,C,D2,E).

• Key Exchange Preshared Symmetric Keys, includes
device initialization, VCA, the key agreement with sym-
metric keys, and application data (A,C,D3,E).

Finally, in Section 3.6, we expand on the threat models
considered in our analysis.

3.1 Device Initialization and VCA phase
Each device gets initialized with a unique device identifier.
Additionally, each device gets its supported software versions,
device capabilities, and cryptographic algorithms. We decided
to model them as fixed after initialization since updating, e.g.
the capabilities, is not clearly specified as of now. In addition,
following the standard we model three ways to initialize cryp-
tographic key material of the device: preshared symmetric
keys (PSK), preshared public keys, and public keys with an
associated certificate; none or any number of them can be
used for initialization. After the initialization the parties ne-
gotiate these capabilities during the VCA phase, as shown in
the state machines in Figure 3a.

Certificates SPDM specifies using certificates as defined
in [14], which implies the need to include a public key in-
frastructure (PKI) and certificate chains with a root of trust
into our analysis. We created an abstract model with a single
trusted root certificate authority (CA), which issues certifi-
cates directly to the devices. We assume that this keeps the

trust anchor assumption of certificate chains in place while
abstracting from all points of failures during the trust delega-
tion. We claim that this abstraction is reasonable, as formally
analyzing PKIs and certificate chains lie outside of the scope
of this paper. Further, we restrict devices to only have a single
slot to store a certificate for each communication partner.

In TAMARIN we created the root CA from a unique pub-
lic key pair and model it as a persistent fact !RootCA(key,
pk(key)). In the same way a device with identifier id is rep-
resented by !Device(id, ...), where we use ... to omit some
details. Now given the initialized device, a fresh long-term
key and the root CA, the latter can sign a certificate for the
newly generated public key of the device as shown in the
following rule:[

!Device(id, ...),Fr(ltk), !RootCA(key,pk(key))
]

—
[
HonestlyGenerated(id, ltk,pk(ltk)), ...

]
→[

!Cert(id,pk(ltk),sign(< id,pk(ltk)>,key)),

Out(pk(ltk),sign(< id,pk(ltk)>,key), ...
]

Notice that to label the honest generation of the public key
pair, we use an HonestlyGenerated action fact containing
the identifier of the device and the keys. As we will see in
Section 4, this helps us to express our security properties.

VCA phase For the VCA phase, we model the established
channel of communication (handled by the underlying net-
work protocol in the implementation) using so called thread
identifiers tid, which are fresh, unique terms. In the follow-
ing we can see the GET_VERSION request generate such an
identifier and bootstrap a protocol run:[

!Device(idReq, ...), !Device(idRes, ...),Fr(tid), ...
]

—
[

StartThread(tid , idReq , idRes) ,

Channel(idReq , idRes)
]
→[

StateReq(tid , idReq , idRes , ..., ’GETVERSION’),

Out(< ’GET_VERSION’, ’1’ >)
]

We restrict the model to only contain a single communication
channel (restriction on the Channel fact) per pair of devices
at the same time. We then restricted that no messages are
allowed to be send using older thread ids (tid.) With this we
aim to distinguish one run of the VCA phase from another
run between the same parties. Moreover, during a protocol
run the Requester should be able to return to the start of the
protocol, by issuing a GET_VERSION request and restart the
entire conversation. At this point, all sessions and data related
to that conversation thread is not accessible anymore, i.e.,
no further transitions are allowed in the old thread. This is
modeled as a restriction in TAMARIN:

∀ tid1 tid2 idReq idRes i j . i < j &

StartThread(tid1 , idReq , idRes)@i &

StartThread(tid2 , idReq , idRes)@j

⇒¬(∃ t . j < t & CurrentThread(tid1 , idReq , idRes)@t)

As we can see, at the GET_VERSION rule we log an action
fact called StartThread with a fresh thread identifier tid
for the conversation, and later on every other transition of
the protocol we always use the CurrentThread action fact.
CurrentThread keeps record of the current thread being
executed. The restriction can be read as: whenever an old
thread tid1 is replaced by a new tid2, there cannot be any
other transition being executed in the old thread tid1.

3.2 Options phase

To model this phase, we captured the multiple transitions,
namely between certificates, digest, challenge and measure-
ments. In total, our model included 17 rewriting rules. Further,
we modeled the transcript needed during the responder authen-
tication procedure using multisets as described for the VCA
phase in Section 3.1. For the details on modelling transcripts
refer to Section 3.4.

Responder Authentication Runtime Responder authen-
tication encompasses the request codes GET_DIGESTS,
GET_CERTIFICATE, CHALLENGE, and their respective re-
sponse codes (see full version [15], Appendix B.) With the re-
striction of only modelling one certificate slot, we also model
that the Requester only stores one certificate of the Responder
it communicates with. Hence, when Requester request the di-
gest of the Responders certificate, we model that verification
of the digest either succeeds or that the digests do not match.
With this, we need to construct a total of 4 rules to exchange a
digest: (i) requesting the digest, (ii) responding to the digest,
(ii) reaction of Requester if the digest is already stored, and
(iv) reaction of Requester if the digest is unknown. In the case
that the digests do not match, the honest Requester requests
the full certificate of the Responder and verifies it using the
root of trust stored in their persistent state.

Measurements The standard offers both signed and non-
signed measurement requests. We modeled only measurement
requests, for which the Requester requires the measurement
response to be signed using the Responder’s private signing
key. As non-signed measurement requests cannot guarantee
any form of authentication, they are irrelevant to our secu-
rity analysis. Additionally, we needed to model two versions
of measurement requests and responses: one for the shared
public key setting and one where certificates are used.

3.3 Session phase

Our formal models include the three session sub-phases: the
handshake, application data exchange loop with key update,
and termination. In Figure 1b we give an overview of the state
machines of a session’s sub-phases.

While devices only have limited memory, there is no a
priori bound on the number of parallel sessions. In our mod-
els, we therefore allow for an arbitrary number of parallel
sessions, each independent from another and executing differ-
ent sub-phases of the execution. To capture this, we main-
tain a main state of the conversation thread and on each
session creation we generate a new temporary state for that
session’s handshake. Specifically, we modeled a rule that
given the main state of the Requester, StateReq, generates
a fresh session identifier sid and outputs the key exchange
state KeyExchangeReq. Respectively, the same transition is
possible for the state of the Responder. In the agents’ state
machines, this transition is represented by the Spawn Session
edge. The core of the rule is the following:[

StateReq(tid, idReq, idRes,v, ..., ’IDLE’), Fr(sid)
]

—
[

CurrentThread(tid , idReq , idRes)
]
→[

StateReq(tid, idReq, idRes,v, ..., ’IDLE’),

KeyExchangeReq(sid, tid, idReq, idRes,v, ..., ’START_KE’)
]

As a result, parties can share data easily between sessions by
accessing the main thread’s memory state. This is desirable
when data needs to be accessible to all other sessions, such as
when a certificate obtained in one session, should be available
when creating the next.

Once at the end of the handshake sub-phase, the parties’
states transition to the application sub-phase, AppDataKey.

3.4 Handshake sub-phase
Certificates In this model we capture the protocol flow of
the key agreement between parties that have been initialized
with certificates signed by a certificate authority CA. From the
specification we modeled the transitions of the Requester and
the Responder to perform the handshake with unilateral and
mutual authentication. In the second case, the Responder can
either use the encapsulated flow to request for the certificate
or use a certificate obtained from a previous session.

To initiate the key exchange the Requester sends a
KEY_EXCHANGE message to the Responder in which it in-
cludes a new Diffie-Hellman public key and its random values.
While sending the message, it updates the transcript by adding
the current message, stores the private key and goes in a state
of waiting for a response. To encode the transition, we use a
multi-set rewriting rule as follows:[
KeyExchangeReq(sid, tid, ..., ’NULL’, tscript, ’START_KE’),

Fr(nonce),Fr(privK), ...
]

—
[

CurrentThread(tid , idReq , idRes) ,

KETranscriptR(tscript)
]
→[

Out(< KEY_EXCHANGE,nonce,gprivK , ... >),

KeyExchangeReq(sid, tid, ...,privK,new_tscript, ’WAIT_RESP’)
]

Notice that we label this transition with the action facts
CurrentThread and KETranscriptR. The first is used to
keep track of the current active thread in the conversation,

as we saw previously in Section 3.3, while the second serves
for message transcript structure checks, as we will see later.

After receiving the response, the state of the Requester can
trigger three possible transitions in our model: a) send a fin-
ish request with only unilateral authentication, b) send their
certificate using the encapsulated flow to mutually authenti-
cate (see Figure 2), and c) send a finish request with mutual
authentication if the certificate was provided in a previous
session. In each of these cases, the parties cannot go back the
protocol steps or change their choice within the same session.
In the end, we model two ways to finish the key exchange,
unilateral and mutual authentication, where in the latter the
Requester also signs the protocol transcript and certificate
digests.

In Figure 3 we give an in-depth description of the Requester
and Responder state machines of setting up a session with
certificates. To represent the handshake with certificates and
mutual authentication we modeled 18 rules in total, in addition
to the 13 rules needed for device initialization and VCA phase.

Preshared public keys The key agreement using preshared
public keys is a slight variation of our certificate model. Here,
the parties do not need to exchange certificates, but rather only
verify their partner’s knowledge of the keys provisioned to
both devices before the start of the protocol. From the certifi-
cate model, we made the following two changes: a) removed
the encapsulated mutual authentication, and b) used preshared
public keys instead of certificates to create signatures of the
transcript. In total we needed 8 rules to capture the transitions
of the handshake.

Preshared symmetric keys We modeled the two options
to perform the handshake of parties who have been provi-
sioned with preshared symmetric keys, namely with both par-
ties contributing on the session secret derivation or only the
Requester. The distinction lays on whether the Responder
expresses intent to contribute by sending a random nonce in
the key exchange response. Concretely in the protocol flow,
the Responder either directly enters the application data phase
after the key exchange request/response or continue with the
finish request/response.

To model the decision of the Responder, we give two dis-
tinct rewriting rules that model the possible responses to the
handshake start and a finish response. We provide further
details in the state machine of the Responder in Figure 4. In
total we model the preshared symmetric key agreement with
9 rules.

Transcripts During the protocol run, the parties need to
sign and/or authenticate the transcript of the conversation.
Transcripts are concatenations of different messages, e.g., in
the key exchange it is the concatenation of the following:
1) messages of the VCA phase, 2) hash of Responder’s cer-

Requester
•

Responder
•

Initialize

Get Version

Get
Version

Get Capabilities

Get Algorithms

New Session

Get
Version

Get
Version

Initialize

Version

Version

Capabilities

Algorithms

New Session

Version
Version

(a) Detailed state machines of the Device Initialization
and VCA phase of the Requester and Responder.

Requester
•

•

Responder
•

•

Spawn Session

KE Req

Process
KE Resp

Old Cert

Encap(Digest)

Encap(Cert)

Finish
MutAuth

Finish

Process
Fin MutAuth

Process
Fin Resp

Own

Resp All
Key Update

Receive Send

Request
End Session

Recv
End

Spawn Session

KE Resp

Old Cert

Encap(AckDigest
GetCert)

Encap(AckCert)

Finish Resp
MutAuth

Finish
Resp

Own

Resp
All

Key Update
Resp

Receive Send

Resp
End

(b) Detailed state machines of the New Session sub-phases of the Requester
and Responder with Certificates model.

Figure 3: Detailed state machines of the Requester and Responder in the Key Exchange with Certificates model. Each of the
labeled edges corresponds to a TAMARIN rule in our model.

Responder
•

•

• Receive PSK_EXCHANGE request, m1
• Generate nonce n2
• Send message m2:

m2 = ”KE_Resp”,v,sid,n2,hmac(T H1, f kResp)

PSK Resp With Nonce (PSK_EXCHANGE_RSP):

• Receive PSK_FINISH request, m3
• Verify Transcript of Requester
• Derive major secrets and message keys
• Send message m4: m4 = ”FIN_Resp”,v
• Enter Application Data

Finish Resp (PSK_FINISH_RSP):

• Receive PSK_EXCHANGE request, m1
• Derive major secrets and message keys
• Send message m2:

m2 = ”KE_Resp”,v,sid,NULL,hmac(T H1, f kResp)
• Enter Application Data

PSK Resp No Nonce (PSK_EXCHANGE_RSP):

Details of rules that are specific to this mode:

Spawn Session

PSK Resp No Nonce

PSK Resp
With Nonce

Finish
Resp

Own

Resp
All

Key Update
Resp

Receive Send

Resp
End

Figure 4: Detailed state machine of the Responder in the Key Exchange with Preshared Symmetric Keys. We give the details
of the rules that are specific to this key exchange mode corresponding to the SPDM responses PSK_EXCHANGE_RSP, and
PSK_FINISH_RSP, while omitting the VCA phase, and the details of Application Data sub-phase, shared across models. The
state machines of the Requester are similar with the additional edges that process the responses of the Responder.

tificate or public key, 3) key exchange request/response 4)
hash of Responder’s certificate (if mutual authentication) or
public key, and 5) finish request/response messages. For the

preshared private keys case, items 2 and 4 are not included.
Note that the transcript only includes the already issued and
the current message. For example, when the Responder signs

the transcript in the key exchange response it will only include
up to item 3.

In our models, we store the messages of the transcript using
multisets. In TAMARIN’s syntax, + denotes multiset union.
We initialize two variables, respectively for the VCA phase
and handshake sub-phase, and update their content on every
new message exchange. To help the tool’s reasoning, we also
prove helper lemmas to show the consistency of the transcript
structure in these variables, like in the following:

∀ ke_transcript i. KETranscriptR(ke_transcript)@i

⇒ (∃ m1 m2 m3 m4.

ke_transcript =< ’Get_Key_Exchange’,m1 >

+< ’Key_Exchange_Resp’,m2 >

+< ’Finish’,m3 >+< ’Finish_Resp’,m4 >)

The lemma states that all KETranscriptR labels at time i
containing the transcript of the key exchange ke_transcript,
will have a transcript with the defined structure. Transcripts
are heavily used in the protocol, not only to be verified and
sent to their partners, but also to derive the session keys and
the authentication keys for the transcripts themselves as we
will see next.

Session key derivation During the key exchange the par-
ties need to derive two keys: a) the finished-keys, used for
authenticating the transcript, and b) the encryption/decryption
keys, used to send encrypted data during the application
phase. Starting from the shared secret, which can be a Diffie-
Hellman output or a preshared symmetric key, both parties
derive role-oriented secrets by incorporating the transcripts
and pre-determined strings. This mean that the parties derive
their own key to encrypt and their partner’s key to decrypt the
messages. The same is applied for the finished key.

The mechanism uses an HMAC and an HKDF function
to expand and derive keys, as defined respectively in [36]
and [37]. However, in the protocol, the parties decide the hash
algorithm to instantiate these functions during the VCA phase.
In TAMARIN, we defined two functions symbols to model the
same functionality. In Figure 5 we can see how the entire key
derivation is performed by the Requester.

3.5 Application Data sub-phase
The application data phase starts at the end of the key agree-
ment, as shown in Figure 3b. At this point in the protocol, the
parties are no longer restricted to their roles as Requester and
Responder. In fact, either of them can send and receive mes-
sages. To capture this, we modeled two rules Send_Message
and Receive_Message. In the first, the sender encrypt a fresh
payload using their encryption key and sends it in the network.
In the latter, the receiver decrypts the cipher text using their
decryption key.

At any point during the session, the parties can update their
own keys or all keys of the session. This includes several
back and forth between the parties, either in their normal flow
or in an encapsulated way (for the Responder). To model
this mechanism we had to abstract the request and verify in
the same step. This was due to the large state the protocol
has accumulated at this point in the protocol, which makes
it difficult to reason about the key secrecy. In total we used
6 rules to model the back and forth of the messages and a
restriction to deprecate the old session key.

In the end, the Requester can send a END_SESSION to
finish the application data and remove all secrets from the
memory. Once the partner processes the request, they send
an acknowledge to end the session and will no longer send
or update in this session. On processing the response the
Requester performs the same operations.

3.6 Threat Models
Attacker-controlled Network The attacker in our models
has full control over the network. We use the built-in Dolev-
Yao attacker of TAMARIN, which can inject, modify and drop
any messages in the network.

Malicious Certificates The attacker can register a mali-
cious certificate for any honest device. For example, the at-
tacker can abuse the Certificate Authority to sign for a victim
device a private-public key pair that are known to the attacker.
We modeled this with a rule that takes as input the Certificate
Authority state, !RootCA (key, pk (key)) with private key key,
an attacker provided private key ltkbad, and the identifier of the
victim’s device idhonest and outputs a correct certificate cert
in the network, cert = sign(< idhonest,pk(ltkbad)>,key). We
question whether such an attacker can break the authentication
guarantees in the certificate mode of the key agreement.

In the other key agreements, with preshared public and
symmetric keys, we assume secret keys are not compromised.

Compromised Session key We also run our models against
another attacker that compromises the session keys of the
parties. To model this behavior, we add a rule that takes as
input the session state of one of the parties and leaks to the
network the session key. As before, the attacker also has the
full power of the built-in attacker. Under this threat model, we
aim to prove the key secrecy and forward secrecy of a session.

4 Formal Analysis using Tamarin

We now turn to formalizing and proving the security prop-
erties of the described SPDM components in the previous
section. Our analysis is expanded across four models: a) the
device attestation, b) the key exchange with certificates, c) key
exchange with preshared public keys, and d) key exchange

Figure 5: Derivation of finished key, session keys and update of message keys for Requester, symmetrically for the Responder.
The _ is a placeholder for the input secret in the function, e.g., the handshake secret is calculated as hmac(keypreshared ,

′ 0′) in
the preshared key setting. For the certificate model, transcript TH1 and TH2 are defined as follows: TH1 = TVCA ∥ h(certResp) ∥
TKeyExchange, and TH2 = TVCA ∥ h(certResp) ∥ TKeyExchange ∥ h(certReq) ∥ TFinish. See Appendix A for more details on transcripts.

with preshared symmetric keys. In these models, we prove
the following guarantees:

• Unilateral Responder Authentication
• Measurements Integrity and Authentication
• Mutual Authentication
• Secrecy of handshake key
• Forward secrecy (in restricted model)

In this section we focus on these properties before discussing
our wider observations in Section 5.

4.1 Unilateral Responder Authentication
The main authentication property of SPDM is authentication
of the Responder by the Requester; by default, this is unilat-
eral authentication: only the Requester obtains a guarantee.
This guarantee can be obtained in two distinct ways:

1. Responder Authentication with Public Key Cryptogra-
phy and Certificates before a key exchange, or

2. Responder Authentication with Public Key Cryptogra-
phy and Certificates during a key exchange (if mutual
authentication is disabled)

We base our formalizations of authentication on the work by
Lowe [41], which states that if a party A in some role roleA
executes a protocol run with partner B and agrees on some
data ds, then there must be a party B in the role of the partner
roleB running the protocol and agreeing on the data ds.

In the context of SPDM and public keys, the identity of a
party is by default equated with its public key. Thus, estab-
lishing that a Requester is communicating with the intended
Responder amounts to verifying that there is thread of the
protocol executed by the owner of the public key. Since we
also model compromised keys, there exists the possibility that

a Requester tries to authenticate a Responder whose private
key is known to the network adversary, who in turn can emu-
late the responses without really running the protocol. Thus,
we specify the authentication property as: for each successful
challenge of an Requester, we expect that (i) if the challenged
public key belongs to an honest party, (ii) there exists a Re-
sponder that owns the expected public key and is running the
protocol. Formally this is specified as:

Definition 1 (Responder Authentication 1).

∀ tid1 id1 id2 pk2 ltk2 i j .

CommitChallenge(tid1, id1, id2,pk2)@i

∧ HonestlyGenerated(id2, ltk2,pk2)@j

⇒ (∃ tid2 t . t < i ∧ RunningChallenge(tid2, id2, ltk2) @t)

The formalization of Responder Authentication 2 during
the key exchange is similar but uses action facts from mutual
authentication as in Section 4.3.

4.2 Measurements

Another stated goal of SPDM is the integrity and authenti-
cation of device measurements. Similarly, to the unilateral
responder authentication we prove the following: For a Re-
quester querying for measurements with the public key of an
honest Responder (i) the Requester is talking to its intended
Responder and (ii) the measurements send by the Responder
are also correctly received by the Requester. In TAMARIN the
guarantee is specified as follows:

Definition 2 (Measurement Authentication).

∀ tid1 id1 id2 pk2 ltk2 sign i j .

CommitMeasurement(tid1, id1, id2,pk2,sign)@i

∧ HonestlyGenerated(id2, ltk2,pk2)@j

⇒ (∃ tid2 t . t < i ∧ RunningMeasurement(tid2, id2, ltk2,sign) @t)

We were able to prove this property using 4 additional
helper lemmas that guide TAMARIN’s proof search.

4.3 Mutual Authentication
In our analysis we prove mutual authentication of the three
modes of the handshake sub-phase, namely with certificates,
preshared public keys and preshared symmetric keys.

Informally, in mutual authentication the parties will verify
the identity of each other in both directions and agree on the
shared data. To express this in our model, we define the two
agents in the roles of the Requester and Responder. Since
we want to prove agreement, the data ds includes the entire
transcript of the protocol (TH2) together with the exchanged
nonces, and the handshake secret. Then, for the commit and
running conversation thread of a party we specify two action
facts CommitMutAuth and RunningMutAuth. The commit
fact is used at the end of the protocol, respectively for the
Requester after receiving the FINISH_RSP, (i.e., the last mes-
sage of the key agreement), and for the Responder after re-
ceiving the FINISH request.

Definition 3 (Mutual Authentication 1). We define mutual
authentication for models with preshared public keys and
certificates as follows, where we require agreement over the
used public keys:

∀ sid1 tid1 pk1 pk2 secret TH2 role1 id2 ltk2 i j .

CommitMutAuth(sid1, tid1,pk1,pk2,secret,TH2,role1)@i

∧ HonestlyGenerated(id2, ltk2,pk2)@j

⇒ (∃ sid2 tid2 role2 t . t < i ∧ not(role1 = role2) ∧
RunningMutAuth(sid2, tid2,pk2,pk1,secret,TH2,role2) @t)

Note that for unilateral responder authentication in the cer-
tificate setting, the Responder does not commit to any data,
as it did not request any certificates if mutual authentication
was disabled.

Similarly, we proved a variation of this property, called
Mutual Authentication 2, for the preshared symmetric keys
models, where we use pre-shared keys instead of public keys
in the action facts.

Definition 4 (Mutual Authentication 2). We define mutual
authentication for models with preshared symmetric keys as:

∀ sid1 tid1 secret TH2 role1 i .

CommitMutAuth(sid1, tid1,secret,TH2,role1)@i

⇒ (∃ sid2 tid2 role2 t . t < i ∧ not(role1 = role2) ∧
RunningMutAuth(sid2, tid2,secret,TH2,role2) @t)

4.4 Secrecy of Handshake Key

We want to prove that if a party finishes the key exchange with
an honest partner, then the attacker does not know the hand-
shake secret. In this property, we consider both the perspective
of the Requester and the Responder.

Definition 5 (Handshake Secrecy). For the Requester, we
define handshake secrecy as:

∀ sid tid idReq idRes pkRes secret id ltk i j .

SesssionMajorSecretReq(sid, tid, idReq, idRes,pkRes,secret)@i

∧ HonestlyGenerated(id, ltk,pkRes)@j

⇒ ¬(∃ t . K(secret)@t)

This formalizes that for any session sid that the Requester
with identifier idReq starts with intended partner idRes, if the
public key of the partner pkRes is honestly generated, then
the attacker does not learn the handshake secret secret at any
timepoint t.

Note this property does not hold for the Responder side in
the handshake with certificates, because the Responder might
not authenticate their partner. In these cases, the attacker can
impersonate a Requester to the Responder and compute the
handshake secret. In our model with certificates, we could
prove that indeed this property does hold: a counterexample
trace exists when the Responder finishes the entire protocol
without a Requester. The best case where we can prove se-
crecy of the Responder’s handshake, is when the parties are
mutually authenticated.

4.5 Forward Secrecy

Forward secrecy, or perfect forward secrecy, is the security
guarantee that previous keys in a conversation are secure
even when the attacker compromises the parties’ keys in the
future [9]. A typical way to achieve forward secrecy within
a session is by using a key derivation function (KDF) to
derive a new key from the old one. Looking at the key update
mechanism in SPDM (see Figure 5), one notices the same
pattern of how the parties forward their keys within a session,
major_secreti+1 = HKDF(major_secreti, ...). This creates a
chain of keys where the attacker cannot compute previous
keys major_secreti even if the future ones are known, unless
they reverse a one-way function.

In TAMARIN we expressed this property that once the Re-
quester idReq updates the current secret from s1 to s2 (s1 and
s2 being the role-oriented major secrets) in session sid1, and
the attacker knows the previous key s1, but has not compro-
mised their partner idRes, then it must have compromised the
Requester before the update.

Definition 6 (Forward Secrecy). In our models, we define

forward secrecy as:

∀ sid1 idReq idRes s1 s2 i j .

OwnKeyUpdate(sid1, idReq, idRes,s1,s2 , ...)@i ∧ K(s1)@j

∧ ¬(∃ sid2 k . CompromiseParty(sid2, idReq, idRes, ...)@k)

⇒ (∃ t . CompromiseParty(sid1, idReq, idRes, ...)@t ∧ t < i))

When trying to obtain the proof for this property, the mem-
ory of the machine was not enough, and TAMARIN’s interface
could not process the protocol’s graphs. Once we restricted
the parties to execute transitions within a session only once,
and provided the tool with a helper lemma and script to guide
the proof search, we could prove the guarantee.

4.6 Analysis Summary
In Table 1 we summarize the main security guarantees that
we proved in our models. TAMARIN automatically proves all
guarantees in this section and their helper lemmas, with the
exception of the complex forward secrecy guarantee whose
proof search we guided with a script. In addition, TAMARIN
automatically proved 54 sanity lemmas in total, showing that
our models execute correctly and capture the intended proto-
col flow.

We ran our models on an Intel(R) Xeon(R) CPU E5-4650L
2.60GHz machine with 756GB of RAM, and 4 threads per
TAMARIN call. The execution time per property proven spans
from 5s (PSK model, handshake secrecy) to 3m28s (certificate
model, handshake secrecy). The execution time per property
proven spans from 3s (Device Attestation, responder authen-
tication) to 4m09s (certificate model, handshake secrecy).

5 Results and Discussion

In the preceding, we have focused on the properties we could
formally prove, and thus Table 1 contains positive results of
properties that hold within our formal model. However, our
modeling and analysis did yield several other observations.

5.1 Potential design pitfalls
While our analysis suggests that SPDM achieves its main
design goals for basic threat models, we note that the current
design still has some design pitfalls, which we hope can be
resolved in future versions.

Session ID size and optional responder nonce in PSK mode
Under some circumstances, the replay protection in the pro-
tocol becomes entirely dependent on the uniqueness of the
session ID. The size of the ID share of each party is two bytes,
which is cryptographically insufficient to prevent replays;
there exist practical attacks that exploit such small ranges.

For example, the Responder nonce is optional. This is par-
ticularly relevant for the PSK mode: if the responder provides

no nonce during a PSK mode session, the initial messages
could be replayed in the future by an attacker to a session that
uses the same session ID (due to the small range) to trigger a
session with the same session keys. This can have two conse-
quences: (a) the Responder can mistakenly assume there is a
recent Requester request, and (b) if a specific session key is
compromised (e.g. through data loss or cryptanalysis), this can
be used together with the reply to impersonate the Requester
indefinitely to the Responder. We recommend requiring the
Responder nonce in this case or at least documenting the
security consequences of omitting it.

Device reset may lead to counter reuse Instead of random
nonces, SPDM allows the use of counters at certain phases
of the protocol. The standard explicitly lists that (a) counters
should not be repeated or reset during the lifetime of a device,
and (b) devices can be reset, which typically leads to loss of
all volatile state on the device. In practice these claims might
be at odds or unrealistic unless counters are stored in non-
volatile memory. It seems prudent to reduce the dependence
on counter uniqueness.

No restrictions on vendor-defined request/response For
flexibility, the standard explicitly allows for vendor-defined
request/response definitions with very few restrictions. If
vendor-defined mechanisms can reuse long-term or ephemeral
secrets from the protocol, they can break the security guaran-
tees of the core design. We recommend these are disallowed
from reusing secrets from the protocol, and instead are just
handled as requests over the standard data transfer managed
by the SPDM core.

Authentication of keys versus device authentication Cur-
rently, all authentication essentially authenticates keys, not
devices or their identifiers. Notably, while in the future SPDM
seems to aim for binding to hardware object identifiers (OID),
there is currently no mechanism that can check that OID iden-
tifiers are bound to keys, nor are OID identifiers included in
transcripts or confirmations. The standard suggests to include
OID identifiers in certificates, which would effectively lift
them into transcripts, but only for the public key modes. This
leaves the PSK mode unsolved, notably in the case that PSKs
are shared among more than two devices. We recommend
explicitly including OIDs in the transcripts.

No default deny-all for remotely setting certificates The
standard includes a feature to remotely set trusted certifica-
tions for parties. This feature has the potential to be misused
and violate all security goals. It seems prudent to require a de-
fault policy that this feature cannot be used, and must require
authentication and specific access policies.

Model Notes Property Result Runtime (s)

Device Attestation Responder Authentication 1 ✓ 3
Measurement Authentication ✓ 6

Certificates Responder Authentication 2 ✓ 53
Mutual Authentication 1 ✓ 91
Handshake Secrecy ✓ 249

Preshared Public Keys Mutual Authentication 1 ✓ 33
Handshake Secrecy ✓ 18

Restricted Model Forward Secrecy ✓ 38
Preshared Symmetric Keys Mutual Authentication 2 ✓ 13

Handshake Secrecy ✓ 10

Table 1: Summary of formal analysis results in TAMARIN. The listed properties and their helper lemmas are proven automati-
cally, except for Forward Secrecy which required us to guide the proof search with a script. The runtime shows the time it takes
for the tool to prove the main property.

Setting certificates From the specification we do not find
any restriction on which Requester devices are allowed to
provision which certificates to which Responder. It only states
that it should be performed in a secure environment.

Specification [26], Section 10.25.2:

For Slot 0 provisioning, the Requester should issue
SET_CERTIFICATE only in a trusted environment (such as
a secure manufacturing environment). For slots 1-7, if
the provisioning happens in a trusted environment, the
Requester should issue SET_CERTIFICATE inside a secure
session.

There may be a connection to the GET_CSR request code,
which allows the Requester to request a certificate signing
request (CSR) from the Responder.

Specification [26], Section 10.25.1:

The resulting CSR contained in a successful CSR response
will have to be signed by an appropriate Certificate
Authority. The details of the Public Key Infrastructure
used to verify and sign the CSR, and make the final
certificate available for provisioning are outside the
scope of this specification.

Thus, the standard currently does not seem to specify
whether a CSR is needed to set a certificate (or to which extent
the CSR is verified), or if those two requests are independent.

5.2 Further observations

Previous responder authentication does not necessarily
strengthen device attestation guarantees The specifica-
tion suggests that it could be interesting to authenticate the
Responder before requesting its measurements.

Specification [26], Section 10.11, line 407:

Because issuing GET_MEASUREMENTS clears the M1/M2 message
transcript, it is recommended that a Requester does
not send this message until it has received at least
one successful CHALLENGE_AUTH response message from
the Responder. This ensures that the information in
message pairs GET_DIGESTS / DIGESTS and GET_CERTIFICATES
/ CERTIFICATES has been authenticated at least once.

However, in our threat models we could not find any need
for this, as proofs about measurement integrity and its au-
thentication do not seem to depend on a previous Responder
authentication. Notably, prior authentication still allows attes-
tation without integrity protection.

5.3 Modelling Lessons

As modeling large-scale protocols comes with several pitfalls
and challenges on the modelers side, we elaborate on the
lessons learned and provide insight for future work in protocol
verification.

Challenges During this work, one of the difficulties we
faced was correctly understanding and extracting the proto-
col’s state machines, from almost 200 pages of natural lan-
guage specification, which had several unspecified requests
and responses. In addition, changing versions of the protocol,
message flows left to be specified by vendors, and an incom-
plete implementation library complicated the modelling effort.
To overcome ambiguity we cross-checked between specifica-
tion and implementation, as well as requested feedback from
people involved in SPDM from Intel. However, the function-
alities left to vendors to specify where not included in our
models (see Section 5.5). Lastly, while modeling the proto-
col modes, we reached a point where TAMARIN could not
process the large state of the protocol. Hence, we could not
reason about all modes in one model, or gain insight from the

user-interface on how to guide the tool in proving properties
without restrictions.

Effort Modelling the protocol and carefully checking their
adherence to the specification and the extracted state ma-
chines was done in several iterations. This process took sev-
eral months (roughly 6-7 person month) of work by extracting
details and cross checking between the specification and the
implementation. The resulting TAMARIN models range be-
tween ∼1000 and ∼1800 LoC.

Takeaways We documented our models and the transitions
captured in TAMARIN, and their exact relations to the state
machines that we built. We hope our models, comments, and
state machines can aid researchers in understanding the under-
lying mechanisms of the protocol and thus encourage future
work. We recommend to build detailed state machines of the
protocol before starting to formally model in TAMARIN: in
our experience it makes the debugging process faster and
leaves less room for errors. Specifying the state the parties
maintain and how it is updated as the protocol progresses
helped us to keep up with the quick development pace.

5.4 Feedback

Since the start of the project we have been in contact with
people involved in SPDM from Intel. Unlike IETF, the official
DMTF feedback route is not suitable for academic research
teams, and is tailored for large companies or universities be-
coming full-fledged DMTF partners, involving declarations
of being authorized to speak on behalf of an institution, and
copyright waivers. Instead, by contacting people directly with
our report, we have received positive feedback and have been
invited to present our findings to the SPDM working group.

5.5 Limitations and Future Work

Analaysis of full SPDM composition To analyze SPDM
at the desired level of detail, we had to split all possible flows
into four separate models. Ideally, we would verify all secu-
rity properties on the complete model, which would reveal
any cross-protocol attacks between the sub-protocols. At the
moment this seems beyond reach of any existing methodology
and would require advances in verification methods.

Missing Functionality As already discussed Section 5, we
did not model all possible functionalities of SPDM. While
some parts of SPDM’s functionality lie outside the scope of
the symbolic model, e.g. sending messages in chunks, others
are still underspecified. See full version [15], Appendix B for
all request and response codes that were not included in our
current models.

Cryptographic Primitives We used standard symbolic
models of the cryptographic primitives, i.e., the classical
Dolev-Yao modeling of primitives. Recently, effort was put
into making the models of cryptographic primitives (e.g. a
signature scheme) much more fine-grained, and capable of
reflecting properties of the concrete instantiations (e.g. the
IETF version of Ed25519) [12, 33]. SPDM uses digital signa-
tures, AEAD, and hashes in multiple phases of the protocol.
We experimented with an over-approximation model where
we used broken cryptographic primitives (e.g. information
leaking hashes, signatures that are verified by anything), we
could observe that authentication properties (like measure-
ment integrity) break. This seems natural and used this model
as a sanity check. Nevertheless, downgrade attacks are a real
risk, and have been shown on older versions of TLS, forcing
the honest participants to use cryptography that modern at-
tackers can break. While this model was a first step to model
downgrade attacks, we leave a detailed downgrade analysis
as future work.

Propagating improvements to the standard In contrast
to IETF’s more open development, DMTF’s traditional re-
porting routes are more focused on industry and university
partner programs rather than individual research teams. How-
ever, based on our detailed analysis, we are now in discussion
with the DMTF SPDM working group members to see which
changes could be feasible integrated at this point of the stan-
dard’s development.

6 Conclusion

DMTF’s SPDM is a complex protocol that uses TLS 1.3-like
elements, but in a sufficiently different way that it does not
automatically inherit any of the guarantees proven for TLS 1.3.
For a protocol with such a wide industry support, it has seen
surprisingly little security analysis.

We performed the first in-depth analysis of this protocol,
proving the core properties of the protocol in a symbolic
model that pushes the limits of what is possible with current
tools like TAMARIN. Our models include all main modes,
and various possible security guarantees; we thus proved the
absence of a substantial class of attacks. Beyond our observa-
tions and suggestions, we expect that a computational analysis
of the actual transmission layer would yield further insights.

Acknowledgements

We are grateful to Justine Sauvage for contributions to the
early stages of the SPDM models, fruitful discussions, and
valuable feedback.

References

[1] Ghada Arfaoui, Xavier Bultel, Pierre-Alain Fouque, Ad-
ina Nedelcu, and Cristina Onete. The privacy of the TLS
1.3 protocol. Proc. Priv. Enhancing Technol., 2019.

[2] David Basin, Cas Cremers, Jannik Dreier, Simon Meier,
Ralf Sasse, and Benedikt Schmidt. Documentation of
the Tamarin Prover, 2022. https://tamarin-prover.
github.io/#documentation.

[3] David Basin, Jannik Dreier, Lucca Hirschi, Saša
Radomirovic, Ralf Sasse, and Vincent Stettler. A formal
analysis of 5G authentication. In ACM CCS, 2018.

[4] David Basin, Ralf Sasse, and Jorge Toro-Pozo. The
EMV standard: Break, fix, verify. In IEEE Symposium
on Security and Privacy (SP), 2021.

[5] Mihir Bellare and Björn Tackmann. The multi-user
security of authenticated encryption: AES-GCM in TLS
1.3. In CRYPTO, 2016.

[6] Karthikeyan Bhargavan, Christina Brzuska, Cédric Four-
net, Matthew Green, Markulf Kohlweiss, and Santi-
ago Zanella Béguelin. Downgrade Resilience in Key-
Exchange Protocols. In IEEE Symposium on Security
and Privacy (SP), 2016.

[7] Karthikeyan Bhargavan, Cédric Fournet, and Markulf
Kohlweiss. miTLS: Verifying Protocol Implementations
against Real-World Attacks. IEEE Secur. Priv., 14, 2016.

[8] Bruno Blanchet. Composition theorems for CryptoVerif
and application to TLS 1.3. In CSF, 2018.

[9] Colin Boyd, Anish Mathuria, and Douglas Stebila. Pro-
tocols for authentication and key establishment. 2020.

[10] Jacqueline Brendel, Marc Fischlin, and Felix Günther.
Breakdown Resilience of Key Exchange Protocols:
NewHope, TLS 1.3, and Hybrids. In ESORICS, 2019.

[11] Chris Brzuska, Antoine Delignat-Lavaud, Christoph
Egger, Cédric Fournet, Konrad Kohbrok, and Markulf
Kohlweiss. Key-schedule security for the TLS 1.3 stan-
dard. IACR Cryptol. ePrint Arch., 2021.

[12] Vincent Cheval, Cas Cremers, Alexander Dax, Lucca
Hirschi, Charlie Jacomme, and Steve Kremer. Hash
gone bad: Automated discovery of protocol attacks that
exploit hash function weaknesses. Cryptology ePrint
Archive, Paper 2022/1314, 2022. https://eprint.
iacr.org/2022/1314.

[13] Ştefan Ciobâcă and Véronique Cortier. Protocol compo-
sition for arbitrary primitives. In CSF, 2010.

[14] David Cooper, Stefan Santesson, Stephen Farrell,
Sharon Boeyen, Russell Housley, and William Polk. In-
ternet X. 509 public key infrastructure certificate and
certificate revocation list (CRL) profile. Technical re-
port, 2008.

[15] Cas Cremers, Alexander Dax, and Aurora Naska. For-
mal analysis of spdm: Security protocol and data
model version 1.2. Cryptology ePrint Archive, Paper
2022/1724, 2022.

[16] Cas Cremers, Alexander Dax, and Aurora Naska.
Tamarin models and analysis scripts to reproduce the
results in this paper, 2022. https://github.com/
AnalysisSPDM/FormalModel.

[17] Cas Cremers and Martin Dehnel-Wild. Component-
based formal analysis of 5G-AKA: Channel assump-
tions and session confusion. 2019.

[18] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam
Scott, and Thyla van der Merwe. A comprehensive sym-
bolic analysis of TLS 1.3. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communi-
cations Security, 2017.

[19] Cas Cremers, Marko Horvat, Sam Scott, and Thyla
van der Merwe. Automated analysis and verification of
TLS 1.3: 0-RTT, resumption and delayed authentication.
In IEEE Symposium on Security and Privacy (SP), 2016.

[20] Cas Cremers, Benjamin Kiesl, and Niklas Medinger. A
Formal Analysis of IEEE 802.11’s WPA2: Countering
the Kracks Caused by Cracking the Counters. In 29th
USENIX Security Symposium, 2020.

[21] CXL. Compute Express Link homepage, 2022. https:
//computeexpresslink.org/.

[22] Hannah Davis, Denis Diemert, Felix Günther, and Tibor
Jager. On the concrete security of TLS 1.3 PSK mode.
In EUROCRYPT, 2022.

[23] Denis Diemert and Tibor Jager. On the tight security of
TLS 1.3: Theoretically sound cryptographic parameters
for real-world deployments. J. Cryptol., 34, 2021.

[24] DMTF. DMTF website. https://www.dmtf.org/.
accessed: 2022-10-09.

[25] DMTF. DSP2058: Security Protocol and Data Model
(SPDM) Architecture White Paper, Version 1.2.0.
https://www.dmtf.org/sites/default/files/
standards/documents/DSP2058_1.2.0.pdf, Oct
2022. accessed: 2022-10-09.

[26] DMTF. DSP2058: Security Protocol and Data
Model (SPDM) Specification, Version 1.2.1.

https://tamarin-prover.github.io/#documentation
https://tamarin-prover.github.io/#documentation
https://eprint.iacr.org/2022/1314
https://eprint.iacr.org/2022/1314
https://github.com/AnalysisSPDM/FormalModel
https://github.com/AnalysisSPDM/FormalModel
https://computeexpresslink.org/
https://computeexpresslink.org/
https://www.dmtf.org/
https://www.dmtf.org/sites/default/files/standards/documents/DSP2058_1.2.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP2058_1.2.0.pdf

https://www.dmtf.org/sites/default/files/
standards/documents/DSP0274_1.2.1.pdf, Jun
2022. accessed: 2022-10-09.

[27] Benjamin Dowling, Marc Fischlin, Felix Günther, and
Douglas Stebila. A cryptographic analysis of the TLS
1.3 handshake protocol candidates. In ACM CCS, 2015.

[28] Benjamin Dowling, Marc Fischlin, Felix Günther, and
Douglas Stebila. A cryptographic analysis of the TLS
1.3 handshake protocol. J. Cryptol., 34, 2021.

[29] Marc Fischlin and Felix Günther. Replay attacks on
zero round-trip time: The case of the TLS 1.3 handshake
candidates. In IEEE EuroS&P, 2017.

[30] Marc Fischlin, Felix Günther, Benedikt Schmidt, and
Bogdan Warinschi. Key confirmation in key exchange:
A formal treatment and implications for TLS 1.3. In
IEEE Symposium on Security and Privacy (SP), 2016.

[31] Sébastien Gondron and Sebastian Mödersheim. Vertical
composition and sound payload abstraction for stateful
protocols. In CSF, 2021.

[32] Andreas V. Hess, Sebastian Alexander Mödersheim, and
Achim D. Brucker. Stateful protocol composition. In
ESORICS, 2018.

[33] Dennis Jackson, Cas Cremers, Katriel Cohn-Gordon,
and Ralf Sasse. Seems legit: Automated analysis of
subtle attacks on protocols that use signatures. In ACM
CCS, 2019.

[34] Tibor Jager, Jörg Schwenk, and Juraj Somorovsky. On
the security of TLS 1.3 and QUIC against weaknesses
in PKCS#1 v1.5 encryption. In ACM CCS, 2015.

[35] Hugo Krawczyk. A unilateral-to-mutual authentication
compiler for key exchange (with applications to client
authentication in TLS 1.3). In ACM CCS, 2016.

[36] Hugo Krawczyk, Mihir Bellare, and Ran Canetti.
HMAC: Keyed-hashing for message authentication.
Technical report, 1997.

[37] Hugo Krawczyk and Pasi Eronen. HMAC-based extract-
and-expand key derivation function (HKDF). Technical
report, 2010.

[38] Hugo Krawczyk and Hoeteck Wee. The OPTLS proto-
col and TLS 1.3. IACR Cryptol. ePrint Arch., 2015.

[39] Xiao Lan, Jing Xu, Zhen-Feng Zhang, and Wen-Tao
Zhu. Investigating the multi-ciphersuite and backwards-
compatibility security of the upcoming TLS 1.3. IEEE
Trans. Dependable Secur. Comput., 16, 2019.

[40] Xinyu Li, Jing Xu, Zhenfeng Zhang, Dengguo Feng, and
Honggang Hu. Multiple handshakes security of TLS
1.3 candidates. In IEEE Symposium on Security and
Privacy (SP), 2016.

[41] Gavin Lowe. A hierarchy of authentication specifica-
tions. In CSFW, 1997.

[42] Simon Meier, Benedikt Schmidt, Cas Cremers, and
David Basin. The TAMARIN prover for the symbolic
analysis of security protocols. In International confer-
ence on Computer Aided Verification (CAV), 2013.

[43] MIPI. MIPI homepage, 2022. https://www.mipi.
org/.

[44] M. Nystrom and B. Kaliski. RFC 2986: PKCS #10:
Certification Request Syntax Specification Version 1.7,
2000. https://www.rfc-editor.org/rfc/rfc2986
(accessed: 2022-10-09).

[45] Kenneth G. Paterson and Thyla van der Merwe. Reactive
and proactive standardisation of TLS. In SSR, 2016.

[46] PCI-SIG. PCI-SIG homepage, 2022. https://pcisig.
com/.

[47] Scott Phuong. End-to-End Infrastucture Se-
curity: Security Protocol and Data Model.
https://www.dmtf.org/sites/default/files/
SPDM_1.0_Keynote_APTS.pdf, 2019. accessed:
2022-10-09.

[48] E. Rescorla. RFC 8446: The Transport Layer Security
(TLS) Protocol Version 1.3, August 2018. https://
tools.ietf.org/html/rfc8446 (accessed: 2022-10-
09).

[49] TCG. Trusted Computing Group homepage, 2022.
https://trustedcomputinggroup.org/.

[50] Jiewen Yao, Krystian Matusiewicz, and Vincent Zimmer.
Post Quantum Design in SPDM for Device Authentica-
tion and Key Establishment. Cryptography, 6, 2022.

A Transcripts

Transcripts for Challenge For the challenge transcript the
following traces are possible:

1. GET_VERSION, GET_CAPABILITIES,
NEGOTIATE_ALGORITHMS, GET_DIGESTS,
GET_CERTIFICATE, CHALLENGE

2. GET_VERSION, GET_CAPABILITIES,
NEGOTIATE_ALGORITHMS, GET_DIGESTS,
CHALLENGE

https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.2.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.2.1.pdf
https://www.mipi.org/
https://www.mipi.org/
https://www.rfc-editor.org/rfc/rfc2986
https://pcisig.com/
https://pcisig.com/
https://www.dmtf.org/sites/default/files/SPDM_1.0_Keynote_APTS.pdf
https://www.dmtf.org/sites/default/files/SPDM_1.0_Keynote_APTS.pdf
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8446
https://trustedcomputinggroup.org/

3. GET_VERSION, GET_CAPABILITIES,
NEGOTIATE_ALGORITHMS, GET_CERTIFICATE,
CHALLENGE

4. GET_VERSION, GET_CAPABILITIES,
NEGOTIATE_ALGORITHMS, CHALLENGE

5. GET_VERSION, GET_CAPABILITIES,
NEGOTIATE_ALGORITHMS, CHALLENGE

6. GET_DIGESTS, GET_CERTIFICATE, CHALLENGE
(if stored VCA)

7. GET_DIGESTS, CHALLENGE (if stored VCA and
cached previous certificate)

8. GET_CERTIFICATE, CHALLENGE (if stored VCA
and cached previous certificate)

9. CHALLENGE (if stored VCA and cached previous
certificate)

Transcripts for Measurement The transcript for measure-
ments is as follows:

VCA , GET_MEASUREMENTS.* , MEASUREMENTS.*

A.1 Transcripts during Key Agreement
Transcript for HMAC in Preshared Symmetric Keys In
the preshared symmetric leys, the parties do not include the
digest of the certificates or public keys. In addition, some of
the requests in the VCA phase may also not be issued. The
transcript can be read as the sequence from the start until the
current message to be sent, e.g. to authenticate the transcript
in the PSK_EXCHANGE_RSP, the Responder will include all
the values of the request to be issued itself, except the HMAC
field called ResponderVerifyData. From the specifications,
the transcript is defined as:

– GET_VERSION.*
– VERSION.*
– GET_CAPABILITIES.* (if issued)
– CAPABILITIES.* (if issued)
– NEGOTIATE_ALGORITHMS.* (if issued)
– ALGORITHMS.* (if issued)
– PSK_EXCHANGE.*
– PSK_EXCHANGE_RSP.* (- ResponderVerifyData)
– PSK_FINISH.* (- RequestorVerifyData)

Transcript for HMAC in Key Exchange In key exchange
the parties send the HMAC of the transcript during all mes-
sages except the KEY_EXCHANGE request. In all cases, the
transcript includes VCA, the available certificates, and the
session handshake messages up to and including the current
one. In the following we show the message sequences:

– VCA
– Hash of the Responder certificate or provisioned public

key

– KEY_EXCHANGE.*
– KEY_EXCHANGE_RSP.* (transcript for Key Exchange

Response)
– (Hash of the Requester certificate or provisioned public

keys) (if mutual authentication)
– FINISH.* (transcript for Finish Request)
– FINISH_RSP.Headers (transcript for Finish Response)

Transcript for Signature in Key Exchange The signature
appended in in the KEY_EXCHANGE_RSP and FINISH mes-
sages, is computed by signing a pre-defined transcript with
the private key of the device’s certificate. The transcript to be
signed is the concatenation of the message sequence:

– VCA
– Hash of the Responder certificate/public key
– KEY_EXCHANGE.*
– KEY_EXCHANGE_RSP.* (transcript for Key Exchange

Response, except the Signature and HMAC field)
– (Hash of the Requester certificate/public key) (if mutual

authentication)
– FINISH.Headers (transcript for Finish Request)

Transcript for Key Derivation To compute session secrets,
the parties also include the key agreement transcript in the
key derivation function. In the protocol we need to define
two transcripts: a) TH1-to derive role-directed secrets in the
handshake phase, and b) TH2-to derive session secrets.

Transcript TH1 for Key-Exchange (and Preshared Keys):

– VCA
– Hash of the Responder certificate
– KEY_EXCHANGE.*
– KEY_EXCHANGE_RSP.* (- ResponderVerifyData)

Transcript TH1 for Preshared Symmetric Keys:

– VCA
– PSK_EXCHANGE.*
– PSK_EXCHANGE_RSP.* (- ResponderVerifyData)

Transcript for TH2 for Key-Exchange:

– VCA
– Hash of the Responder certificate/public key
– KEY_EXCHANGE.*
– KEY_EXCHANGE_RSP.* (- ResponderVerifyData)
– (Hash of the Requester certificate/public key) (if mutual

authentication)
– FINISH.*
– FINISH_RSP.*

Transcript for TH2 for Preshared Symmetric Keys:

– VCA
– PSK_EXCHANGE.*
– PSK_EXCHANGE_RSP.* (- ResponderVerifyData)
– PSK_FINISH.* (if issued)
– PSK_FINISH_RSP.* (if issued)

	Introduction
	Background
	Background on SPDM
	The Tamarin Prover

	Formal Model of SPDM v1.2.1
	Device Initialization and VCA phase
	Options phase
	Session phase
	Handshake sub-phase
	Application Data sub-phase
	Threat Models

	Formal Analysis using Tamarin
	Unilateral Responder Authentication
	Measurements
	Mutual Authentication
	Secrecy of Handshake Key
	Forward Secrecy
	Analysis Summary

	Results and Discussion
	Potential design pitfalls
	Further observations
	Modelling Lessons
	Feedback
	Limitations and Future Work

	Conclusion
	Transcripts
	Transcripts during Key Agreement

