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ABSTRACT
Key Encapsulation Mechanisms (KEMs) are a critical building block
for hybrid encryption and modern security protocols, notably in
the post-quantum setting. Given the asymmetric public key of a
recipient, the primitive establishes a shared secret key between
sender and recipient. In recent years, a large number of abstract
designs and concrete implementations of KEMs have been proposed,
e.g., in the context of the NIST process for post-quantum primitives.

In this work, we (i) establish stronger security notions for KEMs,
and (ii) develop a symbolic analysis method to analyze security pro-
tocols that use KEMs. First, we generalize existing security notions
for KEMs in the computational setting, introduce several stronger
security notions and prove their relations. Our new properties for-
malize in which sense outputs of the KEM uniquely determine, i.e.,
bind, other values. Our new binding properties can be used, e.g.,
to prove the absence of attacks that were not captured by prior
security notions. Among these, we identify a new class of attacks
that we coin re-encapsulation attacks.

Second, we develop a family of fine-grained symbolic models
that correspond to our hierarchy of computational security notions,
and are suitable for the automated analysis of KEM-based security
protocols. We encode our models as a library in the framework of
the Tamarin prover. Given a KEM-based protocol, our approach can
automatically derive the minimal binding properties required from
the KEM; or, if also given a concrete KEM, can analyze if the protocol
meets its security goals. In case studies, Tamarin automatically
discovers, e.g., that the key exchange protocol proposed in the
original Kyber paper [12] requires stronger properties from the
KEM than were proven in [12].
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1 INTRODUCTION
A Key Encapsulation Mechanism (KEM) [18] is a common building
block in security protocols and cryptographic primitives such as
hybrid encryption. Intuitively, a KEM can be seen as a specialized
version of Public Key Encryption (PKE) that, instead of encrypt-
ing a payload message, specifically serves to generate and share
a symmetric key between sender and recipient. During the last
decade, many post-quantum secure KEMs have been proposed, see
e.g., [2, 3, 6, 7, 11, 12, 26, 32, 37, 39]. This has made KEMs a prime
candidate to replace Diffie-Hellman constructions, for which no
practical post-quantum secure scheme is currently available.

The traditional security notion for a KEM is a version of IND-
CCA that is directly inherited from its related Public Key Encryption
(PKE) notion. Intuitively, a KEM is (IND-CCA) secure if, given a
ciphertext, an adversary that does not have the corresponding
private key cannot tell the difference between a random key and
the encapsulated key. Additionally, robustness-like properties have
been proposed for KEMs in [30], which similarly inherit from their
PKE counterparts. Initially, “robustness” [1] was defined in the PKE
setting as the difficulty of finding a ciphertext valid under two
different encryption keys. Phrased differently, a PKE is robust if a
ciphertext “binds to” (only decrypts under) one key.

In this work, we set out to enable automated analysis of KEM-
based security protocols that can take the differences between
concrete KEMs into account. We first systematically explore the
possible binding properties of KEMs. Our work is similar in spirit
to explorations in the space of digital signatures [13, 22, 34, 42] and
authenticated encryption [19, 25, 29, 36], where recent works have
identified many desirable binding properties for these primitives
that could have prevented real-world attacks.

Our systematic analysis leads to the formulation of several core
binding properties for KEMs, with multiple variants. Whereas tra-
ditional KEM robustness properties only considered binding values
to a specific ciphertext, we propose variants that bind values to
a specific output key. We argue this is much more in line with
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viewing a KEM as a one-pass key exchange. Similarly, implicitly
rejecting KEMs resemble implicitly authenticated key exchanges,
where correct binding properties of the established key prevent
classes of unknown key share attacks [9]. We relate our properties
to properties previously reported in the literature, as well as related
notions such as contributory behavior. We provide a full hierarchy
for our properties with implications and separating examples.

We use our new hierarchy to develop novel symbolic analysis
models that reflect the binding differences between concrete KEMs.
We implement our models in the framework of the Tamarin prover
and apply the methodology to several case studies.

Notably, our automated analysis uncovers an attack on an ex-
ample key exchange protocol in the Kyber documentation when
instantiated with another KEM, which proves that the protocol
design in fact relies on properties of the used KEM beyond just
IND-CCA. We coin this type of attack a “re-encapsulation attack”,
as it relies on the adversary encapsulating keying material that it
previously obtained from decapsulation, causing two ciphertexts to
decapsulate to the same key.We also show how our novel properties
can prove the absence of such attacks.

Our main contributions are the following:
(1) We introduce a novel hierarchy of computational binding

properties for KEMs.We position existing notions within our
hierarchy and introduce several new properties. KEMs that
satisfy our key-binding properties will leave fewer pitfalls
for protocol designers.

(2) We develop a symbolic analysis methodology to automat-
ically analyze the security of KEM-based protocols, using
fine-grained models of their KEMs, and implement them
in the Tamarin prover. Our methodology can also be used
to automatically establish the KEM binding properties that
are needed for a protocol to be secure. In case studies, our
automated analysis finds new attacks and missed proof obli-
gations.

(3) Our findings include a new type of protocol attack we coin a
“re-encapsulation attack”.1 Notably, such attacks can occur
even with robust IND-CCA secure KEMs but not with KEMs
that satisfy our stronger key-binding properties.

Reproducibility and artifacts. Our symbolic KEM model library,
case studies, and execution instructions are available for inspection
and reproducibility at [21].

Outline. We provide background and further related work in
the computational setting in Section 2. We then motivate our bind-
ing properties by the example of the re-encapsulation attack in
Section 3, before developing our family of new security notions
in Section 4. We then turn to developing our automated symbolic
analysis in Section 5 and report on case studies in Section 6. We
conclude in Section 8.

Extended Version. In the extended version of this paper [20],
we present proofs establishing the relationship between our KEM

1Tamarin discovered this attack and we coined the term already in September 2022.
We communicated this to one of the authors of [8], who later found an attack from
this class in their work on PQ-X3DH and also used our terminology in [8].

IND-CCAKEM
A :

(𝑠𝑘, 𝑝𝑘 ) ←$ KeyGen( )
(𝑐0, 𝑘0 ) ←$ Encaps(𝑝𝑘 )
𝑘1 ←$ K
𝑏 ←$ {0, 1}

𝑏′ ←$ A𝐷 (𝑠𝑘,𝑝𝑘,·) (𝑐0, 𝑘𝑏 , 𝑝𝑘 )
return 𝑏 = 𝑏′

𝐷 (𝑠𝑘, 𝑝𝑘, 𝑐):

if 𝑐 ≠ 𝑐0 then

𝑘 ← Decaps(𝑠𝑘, 𝑝𝑘, 𝑐 )
return 𝑘

Figure 1: IND-CCA experiment for KEMs. Originally intro-
duced in [18], we re-use syntax from [12].

properties. The appendix additionally provides details on our sym-
bolic KEM implementation. and gives an overview of the binding
properties of some prominent KEM schemes.

2 BACKGROUND
We now give the necessary background knowledge on KEMs and
their main security notions.

KEMs and IND-CCA security. A key encapsulation scheme [18]
KEM consists of three algorithms (KeyGen, Encaps, Decaps). It
is associated with a key space K and a ciphertext space C. The
probabilistic key-generation algorithm KeyGen creates a key pair
(𝑝𝑘, 𝑠𝑘) where 𝑝𝑘 is the public key and 𝑠𝑘 is the secret key. Given
a public key 𝑝𝑘 as input, the probabilistic encapsulation algorithm
Encaps returns a ciphertext 𝑐 ∈ C and a key 𝑘 ∈ K . In this paper,
we sometimes want to view Encaps as a deterministic algorithm
with explicit randomness 𝑟 , in which case we write Encaps(𝑝𝑘 ; 𝑟 ).
To avoid ambiguity, we refer to 𝑘 as the output key or the shared
secret. The deterministic decapsulation algorithm Decaps uses a
public key 𝑝𝑘 , a secret key 𝑠𝑘 , and a ciphertext 𝑐 ∈ C to compute an
output key 𝑘 ∈ K or the error symbol⊥ that represents rejection. If
decapsulation never returns ⊥, we call KEM an implicitly rejecting
KEM. Otherwise, we call it an explicitly rejecting KEM. We say that
a KEM is 𝜖-correct if for all (𝑠𝑘, 𝑝𝑘) ←$ KeyGen() and (𝑐, 𝑘) ←$

Encaps(𝑝𝑘), it holds that Pr[Decaps(𝑠𝑘, 𝑐) ≠ 𝑘] ≤ 𝜖 .
The security of a KEM is defined through indistinguishability

of the output key 𝑘 ∈ K computed by Encaps against different
adversaries. The standard security notion is resistance against a
chosen-ciphertext attack (IND-CCA) [12, 46]. We recall the formal
definition of the IND-CCA experiment shown in Figure 1.

First, the experiment creates a key pair (𝑠𝑘, 𝑝𝑘) and encapsulates
against the public key, returning (𝑐0, 𝑘0). Next, it samples a random
key 𝑘1 from the key space and a random bit 𝑏. Then, the adversary
A is given 𝑐0, the key corresponding to the bit 𝑏, and 𝑝𝑘 , and
outputs its guess 𝑏′. The adversary wins if they correctly guessed 𝑏,
i.e., 𝑏 = 𝑏′. During the experiment, the adversary has access to the
decapsulation oracleDecaps(𝑠𝑘, ·), which returns the decapsulation
of any ciphertext 𝑐 except for the challenge ciphertext 𝑐0.

Fujisaki-Okamoto (FO) transform. A common construction for KEMs
is the FO transform [28]. The FO transform can be used to turn
any weakly secure (i.e., IND-CPA) public-key encryption scheme
into a strongly (i.e., IND-CCA) secure KEM scheme by hashing a
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A

(sskA, spkA) ←$ Kyber.KeyGen()

B

(sskB, spkB) ←$ Kyber.KeyGen()

r←$ {0, 1}𝑛
(eskA, epkA) ←$ Kyber.KeyGen()
(cspkB , kspkB ) ← Kyber.Encaps(spkB; r)

epkA, cspkB

r′←$ {0, 1}𝑛
r′′←$ {0, 1}𝑛

(cepkA , k′epkA ) ← Kyber.Encaps(epkA; r′)
(cspkA , k′spkA ) ← Kyber.Encaps(spkA; r′′)

k′spkB ← Kyber.Decaps(sskB, cspkB )

cepkA , cspkA

kepkA← Kyber.Decaps(eskA, cepkA )
kspkA← Kyber.Decaps(sskA, cspkA )

key← KDF(kepkA , kspkA , kspkB ) key← KDF(k′epkA , k
′
spkA

, k′spkB )

Figure 2: The authenticated key exchange described in the
original Kyber paper [12].

random message (and optionally other values) into an output key.
Since the FO transform gives cryptographers a straightforward
way to create a post-quantum secure KEM from a post-quantum
secure PKE, these KEMs have surged in popularity and are now the
de-facto standard post-quantum secure KEMs. All the finalists of
the KEM NIST PQC [39] process are FO-KEMs.

3 RE-ENCAPSULATION ATTACKS
Our initial motivation for this work was to uncover the subtle
difference in guarantees offered by different KEM designs and to
analyze their impact on protocols. As we will see later, this leads to
a hierarchy of new binding properties, which we used to build an
automated analysis that discovered new attacks. Notably, Tamarin
found instances of a class of attacks that we call re-encapsulation
attacks. While re-encapsulation attacks were not our original mo-
tivation, they clearly illustrate important binding properties that
were not captured by previous security notions.

Intuitively, re-encapsulation attacks exploit the fact that for some
KEMs, it is possible to decapsulate a ciphertext to an output key 𝑘
and then produce a second ciphertext for a different public key that
decapsulates to the same 𝑘 . This can be possible even for robust
IND-CCA KEMs since neither IND-CCA nor robustness prescribe
that the output key binds a unique public key. At the protocol level,
a re-encapsulation attack can typically manifest as an unknown-
key-share attack, where two parties compute the same key despite
disagreeing on their respective partners.

We illustrate this on a concrete example, which was automati-
cally found by Tamarin, on an authenticated key exchange protocol
from the Kyber paper [12] shown in Figure 2.

We stress that when the key exchange protocol is instantiated
with Kyber as intended by the paper, the protocol seems secure.
However, can Kyber be replaced by any other KEM? In the paper,

Kyber is only proven to be IND-CCA secure. Is IND-CCA sufficient
for the protocol’s security? It turns out this is not the case.

To show this, we consider the same key exchange protocol, but
instantiated with KEM⊥𝑚 from [31]. KEM⊥𝑚 is an FO-KEM (cf. Sec-
tion 2). In the context of our work, FO-KEMs are interesting because
they have a property that is not captured by the current syntax of
KEMs: when a party𝐴 decapsulates a ciphertext to learn 𝑘 , they can
also learn the message𝑚 that was encrypted by the underlying PKE.
This is unavoidable for any PKE-based KEM because the ciphertext
that contains𝑚 needs to be decrypted before deriving 𝑘 from𝑚.

To simplify notation in this example, we assume that we can in-
fer the randomness 𝑟 from the message𝑚. This allows for a slightly
more abstract description of the attack, but we can instantiate the
attack for any concrete, vulnerable FO-KEM without this assump-
tion. We capture this by writing (𝑘, 𝑟 ) ← KEM.Decaps(𝑠𝑘, 𝑐) in
this example.

We now explain the re-encapsulation attack in Figure 3. In the
attack, A and B are honest. The adversary C wants to coerce B into
establishing a key shared with A, where B mistakenly assumes that
A thinks they share the key with B; instead, A will think they share
it with C. This is a so-called unknown-key-share attack [9], which
violates B’s implicit key agreement.

The attack proceeds as follows: A initiates communication with
C, after which C decapsulates the ciphertext cspkC to obtain kr0 and,
more importantly, 𝑟0, which was used by A to create cspkC . Now,
C impersonates A towards B by encapsulating against B’s static
public key with 𝑟0 and forwarding the resulting ciphertext and
epkA. B responds with the expected values to A, as B thinks A is
communicating with them. Finally, A decapsulates the ciphertexts
received from B, and both A and B derive the final key. Since we
instantiated the protocol with KEM⊥𝑚 , the keys obtained viaDecaps
only depend on the randomness supplied by the encapsulating party.
As a result, A and B derive the same key; this is a violation of implicit
authentication since A thinks they now share a key with C, which
does not match B’s expectations.

One might wonder whether a KEM with strong robustness prop-
erties would prevent this attack. Unfortunately, this is not the case:
robustness properties reason about a single ciphertext 𝑐 that should
not decapsulate to the same key under different key pairs. How-
ever, our re-encapsulation attack revolves around two different
ciphertexts: based on A’s ciphertext, the malicious C creates a dif-
ferent ciphertext cspkB that decapsulates to the same key as cspkC
by reusing the randomness 𝑟0. For more details, see [20] .

4 NEW SECURITY NOTIONS FOR KEMS
We now turn to our first main objective: to establish a generic
family of binding properties of KEMs. We first identify the elements
that may be candidates for binding. The syntax of a KEM includes
a long-term key pair, a ciphertext, and an (output) key. In some
formalizations, the randomness of the KEM is made explicit, but we
are looking for universal black-box notions that do not require us to
know the internals of a KEM.With respect to the long-term key pair,
we note that we want the guarantees to be relevant for both sender
and recipient, which means we only consider the public key as the
identifying aspect of the key pair. This leaves us with pk, ct, and



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Cas Cremers, Alexander Dax, and Niklas Medinger

A
(assumes peer C)

(sskA, spkA) ←$ KEM.KeyGen()

C
(adversary)

(sskC , spkC) ←$ KEM.KeyGen()

B
(assumes peer A)

(sskB, spkB) ←$ KEM.KeyGen()

r0←$ {0, 1}𝑛
(eskA, epkA) ←$ KEM.KeyGen()
(cspkC , kr0 ) ← KEM.Encaps(spkC ; r0)

epkA, cspkC

(kr0 , r0) ← KEM.Decaps(sskC , cspkC )
(cspkB , kr0 ) ← KEM.Encaps(spkB; r0)

epkA, cspkB

r1←$ {0, 1}𝑛
r2←$ {0, 1}𝑛

(cepkA , kr1 ) ← KEM.Encaps(epkA; r1)
(cspkA , kr2 ) ← KEM.Encaps(spkA; r2)

kr0 ← KEM.Decaps(sskB, cspkB )cepkA , cspkA

kr1← KEM.Decaps(eskA, cepkA )
kr2← KEM.Decaps(sskA, cspkA )

key← KDF(kr1 , kr2 , kr0 ) key← KDF(kr1 , kr2 , kr0 )

Figure 3: Re-encapsulation attack against the Authenticated Key Exchange (AKE) suggested for the Kyber KEM [12] where the
adversary C coerces honest A into unknowingly sharing the key with honest B, who correctly thinks they are being contacted
by honest A. This violates the implicit key agreement guarantee for B, who expects to share a key with someone that assumes
B is the peer. Note that this attack is only possible when the AKE is instantiated with a KEM that does not bind the output key
to the public key, and is not possible when instantiated with Kyber.

ID P Q Property Explanation Relation to existing notions

1 {k} {ct} 𝑋 -BIND-𝐾-𝐶𝑇 Output key binds the ciphertext.
2 {k} {pk} 𝑋 -BIND-𝐾-𝑃𝐾 Output key binds the public key.
3 {ct} {k} 𝑋 -BIND-𝐶𝑇 -𝐾 Ciphertext binds the output key.
4 {ct} {pk} 𝑋 -BIND-𝐶𝑇 -𝑃𝐾 Ciphertext binds the public key. HON -BIND-𝐶𝑇 -𝑃𝐾 is equivalent to SROB [30].
5 {k, ct} {pk} 𝑋 -BIND-𝐾,𝐶𝑇 -𝑃𝐾 Together, the output key and ciphertext

bind the public key.
HON -BIND-𝐾,𝐶𝑇 -𝑃𝐾 is equivalent to SCFR [30].

6 {k, pk} {ct} 𝑋 -BIND-𝐾, 𝑃𝐾-𝐶𝑇 Together, the public key and the output
key bind the ciphertext.

LEAK-BIND-𝐾, 𝑃𝐾-𝐶𝑇 is equivalent to CCR [5].

Table 1: The six core instantiations of our generic binding property 𝑋 -BIND-𝑃-𝑄 before choosing 𝑋 ∈ {HON , LEAK,MAL}.

k: we expect that for each invocation of the KEM’s encapsulation
with the same pk, the outputs ct and k would be unique.

We can thus wonder: if we have a specific instance of one of
these, does that mean the others are uniquely determined? If we
have a ciphertext, can it only be decapsulated by one key?

4.1 Design choices
To define our notions, we make the following design decisions:

(1) We consider the set of potential binding elements BE =

{pk, ct, k}.
(2) We will consider if an instance of a set 𝑃 ⊂ BE “binds” some

instance of another set of elements 𝑄 ⊂ BE with respect to
decapsulation with the KEM. Thus, “𝑃 binds 𝑄” if for fixed
instances of 𝑃 there are no collisions in the instances of 𝑄 .

(3) When using a KEM, pk is re-used in multiple encapsulations
by design. Thus, pk does not bind any values on its own,
and we hence exclude it from occurring in 𝑃 alone. However,
ciphertexts or keys might bind a public key pk, so it may
occur in 𝑄 alone.

(4) Adding multiple elements in the set 𝑄 corresponds to a logi-
cal “and” of the singleton versions, i.e., we have that 𝑃 binds
{𝑞1, . . . , 𝑞𝑛} iff for all 𝑖 ∈ [𝑛] . 𝑃 binds {𝑞𝑖 }. We therefore
choose to focus on the core properties, i.e., with |𝑄 | = 1.

(5) We require 𝑃 and𝑄 to be disjoint: elements that would occur
on both sides are trivially bound. Additionally, we require
both P and Q to be non-empty.

(6) For all of our properties, we will consider honest variants
(i.e., the involved key pairs are output by the key generation
algorithm of the KEM), leakage variants (i.e., the involved
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key pairs are output by the key generation algorithm of
the KEM and then leaked to the adversary), and malicious
variants (i.e., the adversary can create the key pairs any way
they like in addition to the key generation).

Based on the above choices, we have five choices for 𝑃 . We refer
to this set of choices as P =

{
{k}, {ct}, {k, ct}, {k, pk}, {ct, pk}

}
.

For 𝑄 , we can choose from the set Q =
{
{pk}, {k}, {ct}

}
. Without

disjointness this would yield 5× 3 options, but since we require the
sets to be disjoint, this yields seven combinations.

One of these seven cases is the case where P = {pk, ct} and
Q = {k}. This property holds when the public key pair and the
ciphertext, which are the inputs to Decaps, bind the output key. If
Decaps is deterministic, this is trivially true. We will therefore not
consider this case in the remainder of the paper, leaving us with
six combinations that we will investigate further, which we show
in Table 1.

Defining properties over pk. In contrast to the standard KEM API,
our API has the decapsulation algorithm explicity take a public
key as input (see Section 2). We opted for this choice because it
allows us to easily refer to the public key in both encapsulation
and decapsulation operations, which allows us to easily state our
binding properties. This decision comes with an assumption that
we want to make explicity now: We assume that our KEM schemes
do not ignore the pk in Decaps. Whenever the Decaps algorithm
uses the public key, the supplied pk is used; it is not derived or
extracted from the sk.

This assumption is necessary to avoid trivial attacks on theMAL
versions of our security properties: A KEM could simply ignore the
pk supplied to Decaps and, instead, use a public key stored inside
of the sk. This is often done in practice, and Schmieg describes
possible attacks in [48].

We want to stress that while our KEM API is syntactically differ-
ent from the standard API, it is semantically equivalent. To move
from one API to the other, one simply needs to extract the public
key stored inside of the secret key and explicitly supply it, or put
the explicitly supplied public key into the secret key.

4.2 Naming conventions
Naming security notions is hard; once names are fixed, they tend
to stick around for (too) long. We opt here for clarity and being
descriptive at the cost of some verbosity. In the literature, it is
more common to collapse all of these properties into “robustness”
or “collision-freeness”, but this becomes very ambiguous because
one can imagine many subtle variants, depending on the exact
robust/collision-free element in the construction. This has lead
to a long list of non-descriptive names in the literature, includ-
ing: Robustness, Fuller Robustness (FROB), even Fuller Robustness
(eFROB), CROB, KROB, SROB, USROB,WROB, XROB, SCFR,WCFR,
CCR, etc. In contrast, we illustrate our descriptive naming scheme
for our binding properties in Figure 4.

4.3 Generic binding notions of KEMs
We now introduce the generic security notion for our class of bind-
ing properties. In Figure 5 we show the generic game for 𝑋 ∈
{HON , LEAK}, and in Figure 6 we show the game when 𝑋 = MAL.

𝑄 ∈
{
{pk}, {k}, {ct}

}
𝑃 ∈

{
{k}, {ct}, {k, ct}, {k, pk}, {ct, pk}

}
𝑋 ∈ {HON , LEAK,MAL}

𝑋 -BIND-𝑃-𝑄

Figure 4: Design space and naming conventions for our secu-
rity properties: For a KEM scheme that is 𝑋 -BIND-𝑃-𝑄 secure,
we say that “𝑃 [honestly|leak|maliciously] binds 𝑄”, using
“honestly” when 𝑋 = HON , “leak” when 𝑋 = LEAK , and “ma-
liciously” when 𝑋 = MAL. We commonly omit set brackets
in the notation when clear from the context, and we use
uppercase for all characters. For example, HON -BIND-𝐶𝑇 -𝑃𝐾
corresponds to “ct honestly binds pk.”

Definition 4.1. LetKEM be a key encapsulationmechanism. Let𝑋
∈ {HON , LEAK,MAL}, let 𝑃 ∈ P and𝑄 ∈ Q such that 𝑃∩𝑄 = ∅. We
say that KEM is 𝑋 -BIND-𝑃-𝑄-secure iff for any PPT adversary A,
the probability that 𝑋 -BIND-𝑃-𝑄KEM

A returns 1 (true) is negligible.

In our definitions, 𝑋 ∈ {HON , LEAK,MAL} indicates the adver-
sary’s control over the considered key pairs. In the honest case
𝑋 = HON , two honestly generated key pairs are considered, and
we give the adversary access to a decapsulation oracle 𝐷𝑏′ (sk𝑏′ , ·),
where 𝑏′ ∈ {0, 1}, that they can use to decapsulate ciphertexts with
either secret key. For the leak case 𝑋 = LEAK , we also give the ad-
versary access to both secret keys. In the malicious case 𝑋 = MAL,
the adversary can choose or construct the key pairs in any way
they want. For 𝑋 ≠ HON we do not need a decapsulation oracle
since the adversary already has the secret keys.

If 𝑋 ∈ {HON , LEAK}, we check whether pk ∈ P or pk ∈ Q and
choose the key pairs for the second call to Decaps accordingly. For
𝑋 = MAL, the adversary chooses the key pairs.

The difference between 𝑋 = LEAK and 𝑋 = HON is whether
the adversary only has access to a decapsulation oracle or has
access to the secret keys. Given the secret keys, the adversary
can decapsulate ciphertexts and learn intermediate values of the
decapsulation. If they only have the oracle, they only learn the
output of decapsulation but no intermediate values.

4.4 Relating binding to contributive behavior
In the context of other cryptographic primitives, the notion of
contributive (or contributory) behavior exists. Intuitively, in a two-
party protocol that yields some randomized output, a protocol is
contributive if the output is not only determined by one of the
parties, but both contribute to the results.

For example, in a standard FO-KEM such as KEM⊥𝑚 from [31], the
randomness sampled for encapsulation is the direct (and only) input
for the key derivation function (KDF). Thus, for KEM⊥𝑚 , the only
party that contributes to the output key is the sender. We say that
such KEMs are non-contributory and can enable re-encapsulation
attacks, as described in Section 3.

In contrast, if the KEM’s key binds the public key (e.g., by in-
cluding the public key in the KDF), then the KEM satisfies MAL-
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𝑋 -BIND-P-QKEM
A :

sk0, pk0 ← KeyGen( )
sk1, pk1 ← KeyGen( )
if pk ∈ Q : 𝑏 ← 1
else if pk ∈ P : 𝑏 ← 0
else : 𝑏 ∈ {0, 1}, 𝑠𝑡 ← A()
sk1, pk1 ← sk𝑏 , pk𝑏

if 𝑋 = HON : ct0, ct1 ← A𝐷𝑏′ (sk𝑏′ ,·) (pk0, pk1, 𝑠𝑡 )
if 𝑋 = LEAK : ct0, ct1 ← A(pk0, sk0, pk1, sk1, 𝑠𝑡 )
k0 ← KEM.Decaps(sk0, pk0, ct0 )
k1 ← KEM.Decaps(sk1, pk1, ct1 )
if 𝑘0 = ⊥ ∨ 𝑘1 = ⊥ : return 0

// A wins if ¬
(
(∀𝑥 ∈ P . 𝑥0 = 𝑥1 ) =⇒ (∀𝑦 ∈ Q . 𝑦0 = 𝑦1 )

)
return ∀𝑥 ∈ P . 𝑥0 = 𝑥1 ∧ ∃𝑦 ∈ Q . 𝑦0 ≠ 𝑦1

Figure 5: Generic game for our new binding notions 𝑋 -BIND-
P-Q for 𝑋 ∈ {HON , LEAK}.

BIND-𝐾-𝑃𝐾 , and we say that the KEM is contributory because the
recipients’ key contributes to the output key.

If the KEM’s key binds the ciphertext (MAL-BIND-𝐾-𝐶𝑇 ), it is
not immediately clear whether this is enough to make the KEM
contributory, and it depends on the collision freeness [30] (SCFR)
of the underlying PKE. If the underlying PKE is not SCFR, i.e., it is
possible to decrypt a single ciphertext to the same message with
different secret keys, then the KEM is not contributory. The reason
for that is that a single ciphertext is valid for multiple public keys,
and thus the identity of the receiver is not bound by including
the ciphertext in the output key of the KEM. On the other hand,
if the PKE is strongly collision free (or even robust) then includ-
ing the ciphertext makes the KEM contributory. See Corollary 4.9
and Section 4.7 for more details.

4.5 Relationship to other Properties
Our generic security notions cover a wide array of different prop-
erties and generalize existing security properties in the literature.
In this section, we give a short overview of other properties that
can be expressed using our generic notions.

When P = {ct} and Q = {pk}, our generic games resemble
different robustness notions. For example, HON -BIND-𝐶𝑇 -𝑃𝐾 cor-
responds to strong robustness (SROB) from [30] and HON -BIND-
𝐾,𝐶𝑇 -𝑃𝐾 corresponds to strong collision freeness from [30]. In-
terestingly, the strong robustness notion from [1], which coined
the term in the context of PKEs, is weaker than both our HON -
BIND-𝐶𝑇 -𝑃𝐾 notion and the strong robustness notion from [30],
since they both allow the adversary to query an oracle; this was
not possible in the original definition.

The properties introduced for PKEs in [27] are formulated analo-
gously to ours: complete robustness (CROB) resembles MAL-BIND-
𝐶𝑇 -𝑃𝐾 , and their intermediate notion unrestricted strong robust-
ness (USROB) resembles our HON -BIND-𝐶𝑇 -𝑃𝐾 notion.

MAL-BIND-P-QKEM
A :

𝑔, 𝑠𝑡 ← A(𝑠𝑡 )
if 𝑔 = 1 :
(sk0, pk0 ), (sk1, pk1 ), ct0, ct1 ← A(𝑠𝑡 )
k0 ← KEM.Decaps(sk0, pk0, ct0 )
k1 ← KEM.Decaps(sk1, pk1, ct1 )

if 𝑔 = 2 :
(sk0, pk0 ), (sk1, pk1 ), r0, ct1 ← A(𝑠𝑡 )
k0, ct0 ← KEM.Encaps(pk0; r0 )
k1 ← KEM.Decaps(sk1, pk1, ct1 )

if 𝑔 ∉ {1, 2} :
(sk0, pk0 ), (sk1, pk1 ), r0, r1 ← A(𝑠𝑡 )
k0, ct0 ← KEM.Encaps(pk0; r0 )
k1, ct1 ← KEM.Encaps(pk1; r1 )

if 𝑘0 = ⊥ ∨ 𝑘1 = ⊥ : return 0

// A wins if ¬
(
(∀𝑥 ∈ P . 𝑥0 = 𝑥1 ) =⇒ (∀𝑦 ∈ Q . 𝑦0 = 𝑦1 )

)
return ∀𝑥 ∈ P . 𝑥0 = 𝑥1 ∧ ∃𝑦 ∈ Q . 𝑦0 ≠ 𝑦1

Figure 6: Generic game for our new binding notions MAL-
BIND-P-Q. The adversary can use 𝑔 to choose whether they
want to find a collision between two calls to Encaps, Decaps
or a single call to both, in line with [27].

Our HON -BIND-𝐾,𝐶𝑇 -𝑃𝐾 is equivalent to the strong collision
freeness property from [30]; it is a weaker version of SROB, where
an adversary has to decapsulate a single ciphertext to the same
output key for distinct public keys.

LEAK-BIND-𝐾, 𝑃𝐾-𝐶𝑇 matches the ciphertext collision resis-
tance (CCR) property for KEMs from [5].

4.6 Relations and implications
In this section, we show the relations between our various binding
notions.

We provide the proofs and separating examples in the full version
of this paper [20] and only show the main results here, resulting in
the hierarchy in Figure 7. We show that our properties are largely
orthogonal for different choices of P and Q: there exist KEMs that
have a certain property but do not meet the other properties in our
hierarchy. We summarize these results in [20].

We first formalize the ordering of our threat models.

Lemma 4.2. Let KEM = (KeyGen,Encaps,Decaps) be a key encap-
sulation mechanism. If KEM is MAL-BIND-P-Q-secure, then KEM is
also LEAK-BIND-P-Q-secure.

Lemma 4.3. Let KEM = (KeyGen,Encaps,Decaps) be a key encap-
sulation mechanism. If KEM is LEAK-BIND-P-Q-secure, then KEM
is also HON-BIND-P-Q-secure.

The next lemma states that adding elements to P or removing
elements from Q weakens a property. Intuitively, if, e.g., k binds pk,
then k and ct also bind pk (since it is already bound by k).
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MAL-BIND-𝑃-𝑄

LEAK-BIND-𝑃-𝑄

HON -BIND-𝑃-𝑄

×

𝑋 -BIND-𝐾-𝐶𝑇

𝑋 -BIND-𝐾, 𝑃𝐾-𝐶𝑇

𝑋 -BIND-𝐾-𝑃𝐾 𝑋 -BIND-𝐶𝑇 -𝑃𝐾

𝑋 -BIND-𝐶𝑇 -𝐾𝑋 -BIND-𝐾,𝐶𝑇 -𝑃𝐾

Lemmas 4.6 and 4.7
(𝑋 ∈ {HON , LEAK })

Lemma 4.4Lemma 4.4 Lemma 4.4

Lemma 4.2

Lemma 4.3

Figure 7: General hierarchy of binding properties for KEMs. An edge from A to B indicates that any KEM that is A-binding is
also B-binding. Missing edges represent the existence of separating examples, which we show in [20]. The hierarchy left of
the × denotes the implications between the different attacker capabilities {MAL, LEAK, HON}. The hierarchy on the right of
the × represents the implications between our binding properties, independent of the attacker capabilities. We can combine
both hierarchies by choosing a node from the left and instantiating P and Q according to a node from the right, resulting in,
for instance, an implication between MAL-BIND-𝐶𝑇 -𝑃𝐾 and HON -BIND-𝐾,𝐶𝑇 -𝑃𝐾 . For 𝑋 = MAL, 𝑋 -BIND-𝐶𝑇 -𝑃𝐾 and 𝑋 -BIND-𝐶𝑇 -
𝐾 are incomparable. The orange edge indicates that for 𝑋 ∈ {HON, LEAK}, 𝑋 -BIND-𝐶𝑇 -𝑃𝐾 implies 𝑋 -BIND-𝐶𝑇 -𝐾 .

Lemma 4.4. Let KEM = (KeyGen,Encaps,Decaps) be a key en-
capsulation mechanism. For 𝑋 ∈ {MAL, LEAK,HON }, if KEM is 𝑋 -
BIND-P-Q′-secure and P ⊆ P′ ∧ Q ⊆ Q′, then KEM is also 𝑋 -BIND-
P′-Q-secure.

Theorem 4.5. Let KEM = (KeyGen,Encaps,Decaps) be a key en-
capsulation mechanism. For 𝑋 ∈ {MAL, LEAK,HON }, if KEM is 𝑋 -
BIND-P-Q′-secure, 𝑋 -BIND-Q-R′-secure and P ⊆ P′, Q ⊆ Q′ ∪ P′,
and R ⊆ R′, then KEM is also 𝑋 -BIND-P′-R-secure.

In the following, we will investigate the relation between 𝑋 -
BIND-𝐶𝑇 -𝑃𝐾 and 𝑋 -BIND-𝐶𝑇 -𝐾 more closely. First, we will prove
that the former implies the latter when 𝑋 = HON or 𝑋 = LEAK .
Then, we will show that this is not the case when 𝑋 = MAL.

Lemma 4.6. Let KEM be a KEM that is HON-BIND-𝐶𝑇 -𝑃𝐾 secure.
Then KEM is also HON-BIND-𝐶𝑇 -𝐾 secure.

Lemma 4.7. LetKEM be a KEM that is LEAK-BIND-𝐶𝑇 -𝑃𝐾 secure.
Then KEM is also LEAK-BIND-𝐶𝑇 -𝐾 secure.

Proposition 4.8. There exists a KEM scheme KEM that is MAL-
BIND-𝐶𝑇 -𝑃𝐾 but not MAL-BIND-𝐶𝑇 -𝐾 .

These results give rise to a hierarchy for our properties, which
we visualize in Figure 7. We want to highlight that for so-called im-
plicitly rejecting KEMs, i.e., KEMs whose Decaps algorithm never
returns ⊥, we establish a reduced hierarchy in Section 4.8 by show-
ing that for these KEMs the ciphertext alone cannot bind other
values. As a result, implicitly rejecting KEMs cannot meet proper-
ties like HON -BIND-𝐶𝑇 -𝑃𝐾 , i.e., be robust.

4.7 Ensuring strong binding properties
In nearly all KEM designs, the last step of encapsulation and de-
capsulation is to produce the output key by using a KDF (Key
Derivation Function); if not, such a step can be added. In order to
ensure that the key binds another element, we can simply add this
element to the KDF inputs. Thus, to achieve MAL-BIND-𝐾-𝐶𝑇 and
MAL-BIND-𝐾-𝑃𝐾 , we can simply add 𝐶𝑇 and 𝑃𝐾 to the input of
the key derivation function. Of course, this is not the only way to
achieve such binding properties: Leaving out either 𝐶𝑇 or 𝑃𝐾 does

not mean that the corresponding property does not hold; it simply
means there is a proof obligation to show that a KEM meets such a
binding property without this construction.

In practice, and in particular for post-quantum KEMs, the public
key can be substantially larger than the ciphertext. It may therefore
be desirable to avoid directly including the public key in the key
derivation. For this case, we give Corollary 4.9 below. It implies
that KEM designers who want to achieve 𝑋 -BIND-𝐾-𝑃𝐾 but want
to avoid using the public key in the KDF can instead use a robust
PKE and include the ciphertext in the KDF, which will yield the
desired binding to the public key.

Corollary 4.9. Let KEM = (KeyGen,Encaps,Decaps) be a key
encapsulation mechanism. For all 𝑋 ∈ {MAL, LEAK,HON } we have
that if KEM is 𝑋 -BIND-𝐾-𝐶𝑇 -secure and 𝑋 -BIND-𝐾,𝐶𝑇 -𝑃𝐾-secure,
then KEM is also 𝑋 -BIND-𝐾-𝑃𝐾-secure.

We provide the proof in the appendix of [20].

4.8 Implicitly rejecting KEMs
Many real-world KEMs are so-called implicitly rejecting: Their de-
capsulation algorithm never returns ⊥ for a valid ciphertext and
any valid private key. However, only when decapsulating with
the correct private key (corresponding to the public key used for
encapsulation), the correct key is output.

Intuitively, an implicitly rejecting KEM is similar to an implicitly
authenticated key exchange: Successfully completing the protocol
does not imply that someone else has the same key or sent any
message; instead, the guarantee is that only the correct party can
possibly compute the same secret key.

Rejection Keys. When decrypting a ciphertext using implicitly re-
jecting KEMs, one of two outcomes can occur: if the ciphertext is
valid for the KEM key pair, decryption proceeds successfully. How-
ever, if the ciphertext is invalid, the algorithm still yields an output
key, referred to as the rejection key. In Lemma 4.10, we state a useful,
informal lemma that establishes how an implicitly rejecting KEM
has to compute its rejection keys.
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Lemma 4.10. The rejection key computation of an implicitly re-
jecting KEM has to at least contain a secret random value and the
rejected ciphertext.

We do not give a formal proof of this statement. Instead, we argue
informally why for any KEM that does not compute its rejection
keys in this manner, an adversary can actually distinguish the
rejection keys from a random key, turning them into an error flag.
Note that this does not indicate a problem with IND-CCA, as IND-
CCA only requires “accepting” keys to be indistinguishable from a
random key.

Recall that Decaps(sk, pk, ct) is a deterministic algorithm. There-
fore, sk, pk, and ct are the only possible inputs to the rejection key
computation, as Decaps cannot sample random values. Notice that
if the computation only contains pk or ct, the adversary can easily
compute the same rejection key since only public values were used
for the computation. Thus, a secret random value z has to be part
of the computation.

Due to Decaps’s deterministic nature, KEM designers are now
left with two choices: Modify the decapsulation API to include z
directly or let the secret key sk contain z. Depending on the choice
made here and the origin of z (is it randomly sampled independent
or dependent of sk?), it has implications on the achievable binding
properties which we will discuss in Section 7.

Lastly, we point out that the ciphertext needs to be part of the
rejection key computation, as otherwise there will be collisions:
The rejection key would be the same for every ciphertext since sk
and pk are static. One might wonder whether the statement is no
longer true if we allow for a probabilistic Decaps. We argue that
the statement still holds. If Decaps were to sample random, instead
of using static randomness contained in the secret key, different
queries with the same secret key, public key, and ciphertext would
result in different rejection keys.

Modifying the hierarchy. A trivial side effect of implicitly rejecting
KEMs is that the ciphertext alone cannot bind any other value: Any
ciphertext will be accepted, and these will (with overwhelming
probability) decapsulate to different keys. A special case of this is
the observation in [30] that an implicitly-rejecting KEM cannot
satisfy SROB, i.e., HON -BIND-𝐶𝑇 -𝑃𝐾 .

Theorem 4.11. An implicitly rejecting key encapsulation scheme
KEM cannot satisfy𝑋 -BIND-𝐶𝑇 -𝑃𝐾 or𝑋 -BIND-𝐶𝑇 -𝐾 for𝑋 ∈ {HON ,
LEAK, MAL}.

Proof. We now show that:
(1) KEM cannot be HON -BIND-𝐶𝑇 -𝐾-secure.
(2) KEM cannot be HON -BIND-𝐶𝑇 -𝑃𝐾-secure.

The analogous statements for the malicious case then follow by the
contraposition of Lemma 4.3 and Lemma 4.2.

(1) We construct an adversaryA against HON -BIND-𝐶𝑇 -𝐾 . On
input (pk0, pk1), A creates a valid ciphertext by encapsulat-
ing against one public key and returns this ciphertext. Thus,
one decapsulation call in the HON -BIND-𝐶𝑇 -𝐾 game yields
a key that is indistinguishable from true randomness since
KEM is IND-CCA-secure. With overwhelming probability,
the other decapsulation call will return a rejection key that
is computed from a secret random value and the ciphertext.

Thus, if H is a random oracle, we can use the generic birth-
day bound to bound the probability that the valid key and
the rejection key of the two decapsulation operations collide
is negligible. Thus, 𝑘0 ≠ 𝑘1 with overwhelming probability,
and A wins the HON -BIND-𝐶𝑇 -𝐾 game; KEM is not HON -
BIND-𝐶𝑇 -𝐾-secure.

(2) We construct an adversary A against HON -BIND-𝐶𝑇 -𝑃𝐾 .
As KEM is implicitly rejecting, Decaps will always return a
key 𝑘 ≠ ⊥. Hence A chooses two different public keys and
an arbitrary value for the ciphertext. Since all A needs to
achieve is Decaps returning a key that is not equal to ⊥, A
trivially wins the game HON -BIND-𝐶𝑇 -𝑃𝐾 .

□

MAL-BIND-𝑃-𝑄

LEAK-BIND-𝑃-𝑄

HON -BIND-𝑃-𝑄

×

𝑋 -BIND-𝐾-𝐶𝑇

𝑋 -BIND-𝐾, 𝑃𝐾-𝐶𝑇

𝑋 -BIND-𝐾-𝑃𝐾

𝑋 -BIND-𝐾,𝐶𝑇 -𝑃𝐾

Lemma 4.4 Lemma 4.4

Lemma 4.2

Lemma 4.3

Figure 8: Restricted hierarchy of binding properties for im-
plicitly rejecting KEMs, as 𝑋 -BIND-𝐶𝑇 -𝐾 and 𝑋 -BIND-𝐶𝑇 -𝑃𝐾
cannot be met by any implicitly rejecting KEM

Thus, for implicitly rejecting KEMs, we have a reduced hierarchy
of relevant properties. The separation between honest andmalicious
variants persists, but only four core properties are relevant and
distinct, which are the key-binding properties. This leaves us with a
simple hierarchy with only eight relevant binding properties overall
for implicitly rejecting KEMs, which we visualize in Figure 8.

Properties of prominent KEM schemes. In the extended version of
this work [20], we provide a mapping of prominent KEM schemes
from the literature, e.g., [7, 12, 40], to our binding properties.

5 SYMBOLIC ANALYSIS OF KEMS
We now turn to our second main objective: to develop a formal anal-
ysis framework for automatically analyzing security protocols that
use KEMs. Our framework is rooted in the symbolic model of cryp-
tography. In this model, cryptographic messages are represented as
abstract terms from a fixed algebra, such as sign(𝑚, 𝑠𝑘) for message
𝑚 signed with secret key 𝑠𝑘 . Equational theories over terms are used
to encode properties of cryptographic primitives, like the signature
verification equation verify(sign(𝑚, 𝑠𝑘),𝑚, pk(𝑠𝑘)) = true.

The symbolic model gained prominence, especially with the
advent of tools like the Tamarin Prover [43] and ProVerif [10]
enabling automated security analysis of complex security protocols.

We start by examining existing symbolic models of KEMs, used
in the analysis of security protocols with tools such as Tamarin
Prover and ProVerif , exploring the extent to which they satisfy our
specified properties. We then introduce Tamarin in more detail,
as we will use it to implement our framework. Tamarin is one
of the state-of-the-art analysis tools, which has demonstrated its
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efficacy with similar approaches [16, 34]. Lastly, we create new
fine-grained symbolic models for KEMs that allow us to configure
which cryptographic properties they have, allowing us to precisely
model real KEM schemes in the symbolic model.

5.1 Previous Symbolic KEM Models
We are not the first to model KEMs in the symbolic model. Some
KEM-based protocols, e.g., KEMTLS [44, 45, 47], post-quantum
Wireguard [33], and PQXDH [8], were recently analyzed in the
symbolic model. In this section, we investigate how these case
studies model KEMs, which of our binding properties these models
achieve, and why a class of symbolic models for KEMs implicitly
assumes certain binding properties, highlighting the need for a new
symbolic model that can model any combination of our binding
properties.

In [47], the authors create and analyze two Tamarin models of
KEMTLS, a variant of TLS that uses KEMs to achieve post-quantum
security. Similarly, [33] uses Tamarin to analyze a KEM-based
variant of Wireguard. The authors of [8] use another tool, ProVerif ,
to analyze the PQXDH protocol. In all of these case studies, function
symbols and equational theories are used to model the behavior of
KEMs. In fact, all but onemodel from [47] use the built-in equational
theories for public key encryption to model KEMs. Concretely, they
use the function symbols aenc/2, denoting encryption, and adec/2,
denoting decryption. The function symbols are related through the
equation adec(𝑠𝑘, aenc(𝑝𝑘 (𝑠𝑘),𝑚𝑠𝑔)) = 𝑚𝑠𝑔 and mapped to the
standard KEM API in the following way:

Encaps(𝑝𝑘 (𝑠𝑘), 𝑟 ) = aenc(𝑝𝑘 (𝑠𝑘), 𝑟 )
Decaps(𝑠𝑘, 𝑐𝑡) = adec(𝑠𝑘, 𝑐𝑡)

Note that Encaps does not return a tuple of ciphertext and key but
only the ciphertext. Instead, 𝑟 directly serves as the output key.
One model from [47] uses a slightly different approach: instead of
using r directly as the output key, they incoporate the receiver’s
public key and model the output key as a function kdf (r, pk). These
models for KEMs are not surprising, since PKEs and KEMs are also
strongly related in the computational model.

However, unlike the computational model, the above symbolic
models encode much stronger assumptions on KEMs than just IND-
CCA. Because the output key and the ciphertext are deterministic
functions of pk and r , they bind these values by construction. That
is, given an output key (or a ciphertext), the corresponding public
key and randomness are uniquely determined. In fact, the reverse
is also true. Thus, any symbolic model that computes, for instance,
the ciphertext as ct = Encaps(pk, r) is MAL-BIND-𝐶𝑇 -𝑃𝐾 , MAL-
BIND-𝐶𝑇 -𝐾 (assuming 𝑘 is also a function of pk and r), and MAL-
BIND-𝐾, 𝑃𝐾-𝐶𝑇 by construction.

As a result, the second KEM model from [47] implicitly assumes
that the KEM satisfies all of our MAL binding properties. This
means they cannot detect, e.g., re-encapsulation attacks. On the
other hand, the first model from [47] and the models from [8, 33]
do not assume HON -BIND-𝐾-𝑃𝐾 or HON -BIND-𝐾-𝐶𝑇 , because the
output key is independent of the public key. Consequently, this
model might detect some of our re-encapsulation attacks, which
the findings of [8] confirm.

5.2 The Tamarin prover
Tamarin [43] is a tool for the automated analysis of protocols in
the symbolic setting. It takes a protocol description in a custom
modeling language and security properties specified in a fragment
of first-order logic as input. The modeling language allows a user
to specify the protocol rules and the adversary’s capabilities via
multiset rewriting rules. These rules induce a labeled transition
system. Tamarin then tries to verify whether the given security
properties hold for all traces of the transition system. We will now
give more background on some features of the Tamarin prover
that are necessary to understand the remainder of the paper.

A multiset of facts serves as the state of the labeled transition
system. The rewriting rules manipulate this state by adding and
removing facts. Facts are special user-defined symbols that contain
terms and represent the state of the protocol. The state of the
adversary (i.e., their knowledge) is modeled by a distinct set of facts.
An example of a fact would be Alice(pk, sk), which models Alice
who is in possession of some key pair (pk, sk).

A labeled multiset rewriting rule looks as follows:

[Alice(pk, sk, ct), !KeyValues(k)] (1)
−[Decaps(k, ct, pk, sk)]→ (2)
[Out(k)] (3)

The lines (1), (2), and (3) contain multisets of facts called premises,
actions, and conclusions, respectively. Facts annotated with a ! are
called persistent and are not removed from the multiset when a rule
is executed. A rule can be executed in a given state if the premises
are a subset of the current state. To execute the rule, Tamarin
removes the premises from the state and adds the conclusions to it.

The execution of the protocol starts with the empty multiset
as state and uses the rules to transition from one state to another.
Rules can be used any number of times. The resulting sequence of
actions is called a trace.

The user can specify formulas in a fragment of first-order logic
that features quantification over terms and timepoints. In these
formulas, the user can refer to the actions of the protocol and
specify security properties. We write an action F at a timepoint #t
as F(𝑡𝑒𝑟𝑚𝑠)@#t. The first-order logic fragment features the usual
boolean connectives, ordering and equality of timepoints.

For our work, we also make use of Tamarin’s restrictions. Re-
strictions are formulas like the security properties, but they are
used to constrain the execution of the protocol: if a trace violates
any restriction, Tamarin immediately discards it. Commonly, re-
strictions are used to model the conditional execution of rules based
on the equality of terms or to ensure that certain rules are executed
only once. However, recent work [16, 34] has used restrictions to
create event-based models of cryptography that directly encode the
properties of cryptographic primitives as defined by their security
definitions, only disallowing behavior that is explicitly forbidden
by the security notion. We will follow a similar approach to create
our own symbolic models for KEMs.

5.3 Improved Symbolic Model for KEMs
In Section 5.1, we investigated which of our binding properties
are met by existing symbolic models for KEMs, which properties
are not met, and which properties are always implicitly assumed
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by function-symbol based models. While the approaches used in
[8, 33, 44, 45] can capture some specific KEM properties, they can
not model most combinations of our binding properties.

In this section, we rectify this by developing a new symbolic
model for KEMs that allows the user to specify exactly which bind-
ing properties the model gives. Like the Symbolic Verification of
Signatures model from [34], our model achieves this by only rely-
ing on the implications that the standard computational security
definitions, e.g, IND-CCA, and our binding properties give, which
makes it perfectly suited for verification.

Specification. We observe that the definitions of correctness and
IND-CCA only hold when the key pair that is used is honestly
generated. When this is not the case, no guarantees are given. Cor-
rectness requires that the decapsulation of a ciphertext created by
encapsulating against an honest public key returns the same output
key for both algorithms. IND-CCA requires that the output key,
created by encapsulating against an honest public key, is indistin-
guishable from true randomness (even when the adversary has
access to a decryption oracle). Additionally, we note that Encaps
can be a probabilistic algorithm, while Decaps is deterministic.

We now build a symbolic model that follows these constraints
but allows for any other behavior. To do so, we model the key-
and ciphertext space of a KEM and allow the adversary to choose
arbitrary values from them as the result of Encaps and Decaps, as
long as they respect the following constraints:

(1) If the public key was honestly generated, an Encaps com-
putation must return a fresh key different from any other
Encaps computation.

(2) If the public key was honestly generated, Encaps andDecaps
computations using the same ciphertext and public key pair
must return the same output key.

(3) Given𝑋 -BIND-P-Q, any pair of calls toDecaps (and/or Encaps
if𝑋 = MAL) must agree onQ if the parameters in P are equal.

(4) Multiple computations of Decaps with the same inputs give
the same result.

(5) Any Encaps computation by the adversary only results in
fresh keys or known values from the key space.

Constraints 1) and 2) model IND-CCA and correctness respec-
tively, 3) ensures that the relevant binding properties are met, 4)
makes Decaps deterministic, and 5) models the adversary comput-
ing a derandomized Encaps as seen in Section 3. We overapprox-
imate this by allowing the adversary to let Encaps result in any
element of the key space if they were already aware of this value,
as letting the adversary choose any value would break IND-CCA.

Additionally, we add an option that, when enabled, specifies that
Encaps and Decaps only work on honestly generated key pairs,
rejecting any other values. This allows us to prevent the adversary
from breaking IND-CCA and correctness by feeding bogus values
into Encaps and Decaps. To achieve this, we require that a user of
our library annotates rules in which the protocol honestly generates
a public key pk with an action GoodKey(pk).

Due to space limitations, we only give a brief example of how
our KEM model works. Recall the previous multiset rewriting rule.
It shows how Alice, who possesses a public key pk, a secret key sk,
and a ciphertext ct, decapsulates with these values to obtain key k.
As long as the semantic constraints of our KEM model are fulfilled,

the key can be an arbitrary value from the key space, represented
by !KeyValues. Note that the key space only contains atomic values,
which allows our KEM model to avoid achieving certain binding
properties, e.g.,MAL-BIND-𝐶𝑇 -𝑃𝐾 , by construction, which was not
possible for previous symbolic models (see Section 5.1).

Definition 5.1. HON -BIND-𝐾-𝑃𝐾 restriction

∀ k ct1 ct2 pk1 pk2 sk1 sk2 #i #j #l #m .

Decaps(k, ct1, pk1, sk1)@#i ∧ Decaps(k, ct2, pk2, sk2)@#j
∧ GoodKey(pk1)@#l ∧ GoodKey(pk2)@#m
⇒ (pk1 = pk2)

In Definition 5.1, we show an example of how we formulate our
binding properties as restrictions in Tamarin. For a more detailed
description of our implementation, we refer the reader to [20].

6 CASE STUDIES
This section showcases the practicality of our approach through
case studies. We begin with a brief overview of the evaluation
methodology applied to evaluate the various Authenticated Key Ex-
change (AKE) protocols we modelled as case studies. In Section 6.2,
we summarize the outcome of the chosen case studies. As case
studies, we cover diverse post-quantum AKE protocols from the
literature like the Kyber-AKE [12] or PQ-SPDM [49, 50], detailed
in Sections 6.3 to 6.6.

6.1 Methodology
Our novel KEM model allows us to reason about both (i) an adver-
sary that is restricted to use honestly generated, valid public key
pairs as required by the KEM scheme and (ii) arbitrary, potentially
malicious keys. Together with the option to use any combination
of our specified binding properties from Section 4, this leads to a
high number of configurations. Thus, it is infeasible to analyze each
security property of every case study with every configuration of
our KEM model. To analyze the influence of our binding notions
on a protocol’s security properties, we develop a methodology that
allows us to discover the minimal requirements on a KEM that are
needed to prove the property, while pruning the search space.

Initial Configuration Testing. First, we analyze each statement of
a protocol with the following initial configurations:

(1) Only keys from KeyGen and no binding properties
(2) Only keys from KeyGen and all leak binding properties
(3) Any keys and no binding properties
(4) Any keys and all malicious binding properties
If, for a specific property of a protocol, Tamarin terminates with

the same result in each of these configurations, we conclude that the
protocol gives this property independent of any binding properties
of the KEM or maliciously generated key pairs.

Key-Based Inference. If Tamarin falsifies a property when we
allow malicious keys, we infer that the protocol indeed relies on
honestly generated key pairs to give the property.

Binding Property Analysis. In the event that Tamarin gives dif-
ferent results when we change the binding property, we proceed
with a more in-depth analysis:
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#Lemmas KEM-Binding Dependent Runtime for
Model Secrecy Auth. Auxiliary #Tamarin calls Protocol Properties Initial Configurations

Onepass AKE 5 4 3 48 Implicit Key Authentication (Init.) ∼ 1m
Σ′0-protocol 3 6 0 36 Implicit Key Authentication (Init.), SK-security ∼ 6m
PQ-SPDM 6 12 8 104 ∼ 38m
Kyber-AKE 4 2 7 52 Implicit Key Authentication (Init., Resp.) ∼ 4h10m

Table 2: Summary of the analysis for our initial configurations. For the listed protocol properties, Tamarin returns different
verification results in our initial configurations. For the minimal binding properties required to prove them, we refer to Table 3.

(1) For both the LEAK andMAL setting, we construct a directed
acyclic graph whose nodes correspond to the possible combi-
nations of our binding properties. We add an edge from node
u to node v iff the properties that correspond to u imply the
properties that correspond to v.

(2) To efficiently compute for which combinations of properties
a given statement is valid, we explore the graph as follows:
We pick an unexplored node randomly and try to verify the
statement using the corresponding binding properties. If
Tamarin proves the statement, we mark the node as proven
and recursively mark all of its parent nodes as proven too.
We know that Tamarin will also prove the statement for
the parent nodes since their corresponding properties imply
the properties that were sufficient for a proof. If Tamarin
falsifies the statement we mark the node as falsified, and
recursively mark all of its child nodes as falsified too. This
result is also valid for the child nodes because the correspond-
ing binding properties of these nodes are weaker, removing
fewer traces from the model and thus allowing for the same
counterexample. In the event of a timeout (30 minutes), we
mark the node as timed out and continue.

(3) Once all nodes are marked, we extract the nodes for which
Tamarin could still verify the statement but for whose direct
child nodes Tamarin cannot verify the statement. The prop-
erties corresponding to these nodes are the minimal binding
properties Tamarin needs to verify the statement.

6.2 Discussion of Results
We ran our models on an Intel(R) Xeon(R) CPU E5-4650L 2.60GHz
machine with 1TB of RAM and 4 threads per Tamarin call. The ex-
ecution time of our full methodology was approximately ∼16h30m.

We summarize the results of our initial configuration (see Sec-
tion 6.1) in Table 2. We can observe that the specified security
properties of the one-pass AKE, Kyber-AKE, and Σ′0-protocol do
not solely rely on IND-CCA but also on other binding properties of
the KEM. Details regarding this can be found in the corresponding
sections 6.3, 6.4, and 6.6.

In Table 3 we show the concrete binding properties the afore-
mentioned protocols require of their KEMs to achieve the desired
security properties.

Challenges. The newly introduced symbolic definitions of Encaps
and Decaps can now result in arbitrary values from the key- and
ciphertext space instead of only compound terms built from their

inputs–vastly increasing the size of the search space. As the de-
fault heuristics of Tamarin do not prioritize solving, e.g., Encaps
goals, when exploring the search space, we additionally develop
proof tactics, tailored towards our KEM model. These tactics are
prioritizing goals related to the output key, the KEM secret keys,
and key-derivation functions, as well as deprioritizing goals related
to ciphertexts.

6.3 One-Pass AKE
As a starting point, we model a one-pass AKE based on the SIKE
protocol from [31], which we show in Figure 9. Note that in this
protocol the Recipient does not receive standard mutual authenti-
cation guarantees since it cannot verify any information from the
Initiator. Thus, we focus on the properties the Initiator can achieve.

𝐼

knows 𝐼𝐷𝑅

𝑅

(ltkR, IDR) ←$ KeyGen()

(c, k) ← Encaps(IDR)
c

k ← Decaps(ltkR, c)

Figure 9: Simplified one-pass AKE.

In particular, we are interested in authentication properties like
Implicit Key Authentication (as defined in Definition 6.1). However,
in this protocol, neither the Initiator nor the Recipient can achieve it,
since only one party contributes to the final key. Thus, we focus on a
weaker, unilateral version, where only the identity of the Recipient
has to match in both sessions, i.e., both Initiator and Recipient agree
on the Recipient’s identity when they derive the same shared key.

We find that the Initiator can achieve this weaker property when
the protocol uses a KEM that is at least𝑋 -BIND-𝐾-𝑃𝐾-secure.When
the KEM does not have this binding property, the adversary can
mount a re-encapsulation attack against the Initiator by leaking
ltkR of the Recipient and then re-encapsulating towards another
Recipient, resulting in two Recipient sessions with the same key.

Definition 6.1. Implicit Key Authentication Initiator
∀ id1 id2 pkI1 pkI2 pkR1 pkR2 k ct1 ct2 #i #j .
FinishInitiator(id1, pkI1, pkR1, k, ct1 )@#i
∧ FinishResponder(id2, pkI2, pkR2, k, ct2 )@#j
⇒ (𝑝𝑘𝐼1 = 𝑝𝑘𝐼2 ∧ 𝑝𝑘𝑅1 = 𝑝𝑘𝑅2)
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Model Protocol Property Minimal Binding Properties

One-pass AKE Implicit Key Authentication (Init.) 𝑋 -BIND-𝐾-𝑃𝐾 { 𝑋 -BIND-𝐾-𝐶𝑇 , 𝑋 -BIND-𝐾,𝐶𝑇 -𝑃𝐾 }
Σ′0-perfect Implicit Key Authentication (Init.) 𝑋 -BIND-𝐾-𝑃𝐾 { 𝑋 -BIND-𝐾-𝐶𝑇 , 𝑋 -BIND-𝐾,𝐶𝑇 -𝑃𝐾 }
Σ′0-protocol Implicit Key Authentication (Init.) 𝑋 -BIND-𝐾-𝑃𝐾 { 𝑋 -BIND-𝐾-𝐶𝑇 , 𝑋 -BIND-𝐾,𝐶𝑇 -𝑃𝐾 }

SK-Security HON -BIND-𝐶𝑇 -𝐾
MAL-BIND-𝐶𝑇 -𝐾 MAL-BIND-𝐶𝑇 -𝑃𝐾

Kyber-AKE Implicit Key Authentication (Init.) 𝑋 -BIND-𝐾-𝑃𝐾 { 𝑋 -BIND-𝐾-𝐶𝑇 , 𝑋 -BIND-𝐾,𝐶𝑇 -𝑃𝐾 }
Implicit Key Authentication (Resp.) 𝑋 -BIND-𝐾-𝑃𝐾 { 𝑋 -BIND-𝐾-𝐶𝑇 , 𝑋 -BIND-𝐾,𝐶𝑇 -𝑃𝐾 }

Table 3: Minimal binding properties required by Tamarin to prove the property of an AKE model. We omit the set brackets
for singleton sets like HON -BIND-𝐶𝑇 -𝐾 . We write 𝑋 -BIND-P-Q without specifying 𝑋 to indicate that this set of properties is a
solution for 𝑋 = MAL when all keys are allowed and for 𝑋 = HON when only honestly generated keys are allowed.

6.4 Σ′0-protocol
The Σ′0-protocol is introduced by [41] as a KEM-based variation of
the Σ0-protocol [15]. The original Σ0-protocol is a component of the
Internet Key Exchange (IKE) protocols [35], and Σ′0 was suggested
as a post-quantum replacement. We provide a description of the
Σ′0-protocol in Figure 10. [41] claims that the Σ′0-protocol is SK-
secure in the post-specified peer model [15] for any IND-CCA KEM.
We analyze whether Σ′0 achieves SK-security (Definition 6.3) and
Implicit Key Authentication and Final Key Secrecy (Definition 6.2).

Definition 6.2. Final Key Secrecy Initiator

∀ id pkI pkR k ct #i #j .
FinishInitiator(id, pkI , pkR, k, ct )@#i ∧ GoodKey(pkR)@#j
⇒ (∃ #x .K(k)@#x ) ∨ (∃ #x .RevealLTK(pkR)@#x )

Definition 6.3. SK-Security

∀ sid pkI pkR k k2 #i #j .
FinishInit(sid, pkI , pkR, k)@#i ∧ FinishResp(sid, pkI , pkR, k2)@#j
∧ 𝑛𝑜𝑡 (∃ #y .RevealLTK(pkR)@#y) ∧ 𝑛𝑜𝑡 (∃ #x .RevealLTK(pkI )@#x )
⇒ (k = k2) ∧ 𝑛𝑜𝑡 (∃ #z .K(k)@#z)

When modeling Σ′0, we noticed two issues with the protocol
description in [41]. First, the authors assume that the Responder
can store an unlimited number of session identifiers it receives
from the Initiator and that it only accepts sessions that use a new,
unused identifier, which is notoriously hard to achieve. Second,
after replying to the Initiator, the Responder should erase pkI from
its state. However, when the Responder receives the final message, it
has to verify𝜎I–which contains pkI . It is unclear how the Responder
can verify this signature after erasing pkI .

To address these issues, we create two Σ′0 models. In the first
model, Σ′0-perfect, the Responder keeps pkI in its state and verifies
𝜎I correctly, as well as only accepting the first message when it
sees a new, fresh session identifier. The second model, Σ′0, does
not keep pkI in the Responder’s state, and the verification of 𝜎I =
(0, sid, 𝑐, pk) succeeds for any KEM public key pk as long as 0, sid,
and c are correctly signed. In this model, the Responder always
replies to the first message, even if session identifiers repeat.

We find that Σ′0 and Σ′0-perfect achieve Implicit Key Authentica-
tion and Final Key Secrecy for the Responder in all of our initial
configurations. Additionally, we prove Full Key Confirmation for
the Responder, which we define in Definition 6.4.

𝐼

(ltkI , IDI ) ←$ KeyGen()

𝑅

(ltkR, IDR) ←$ KeyGen()

sid←$ {0, 1}𝑛
(pkI , skI ) ←$ KeyGen()

sid, pkI

(c, k) ← Encaps(pkI )
𝑘0 = 𝐹𝑘 (0)
𝑘1 = 𝐹𝑘 (1)
𝜎𝑅 = sign𝑙𝑡𝑘𝑅 (1, sid, 𝑝𝑘𝐼 , 𝑐)

tag𝑅 = mac𝑘1 (1, sid, 𝐼𝐷𝑅)
sid, c, IDR, 𝜎R, tagR

k← Decaps(skI , c)
𝑘0 = 𝐹𝑘 (0)
𝑘1 = 𝐹𝑘 (1)

verify𝐼𝐷𝑅
(𝜎𝑅)

verify𝑘1 (tag𝑅)
𝜎𝐼 = sign𝑙𝑡𝑘𝑅 (0, sid, 𝑐, 𝑝𝑘𝐼 )

tag𝐼 = mac𝑘1 (0, sid, 𝐼𝐷𝐼 ) sid, IDI , 𝜎I , tagI

verify𝐼𝐷𝐼
(𝜎𝐼 )

verify𝑘1 (tag𝐼 )

Figure 10: The Σ′0-protocol introduced by [41].

Definition 6.4. Full Key Confirmation Responder

∀ sid pkI pkR k epkI #i #j .
FinishResponder(sid, pkI , pkR, k, epkI )@#i ∧ GoodKey(epkI )@#j
⇒ (∃ pkI2 pkR2 epkI2 #x .FinishInitiator(sid, pkI2, pkR2, k, epkI2 )@#x )

As is the case for Kyber-AKE (Section 6.6), both Σ′0 and Σ
′
0-perfect

do not achieve Implicit Key Authentication for the Initiator for any
IND-CCA-secure KEM. This is because the adversary can switch
pkI for their own ephemeral key and reveal ltkR of the Responder.
Let 𝐴 and 𝐵 be honest agents. The attack then proceeds as follows:
the adversary waits until 𝐴 initiates a session as initiator with
peer 𝐵 and starts another session impersonating as 𝐶 towards 𝐵 in
the Responder role. After replacing pkA with their own ephemeral
KEM key pkC and revealing ltkB, the adversary forwards sid, pkC
to 𝐵, who acts according to the protocol. Then, the adversary de-
capsulates 𝑐 to learn 𝑘 , 𝑘0, and 𝑘1. Next, the adversary mounts a
re-encapsulation attack against 𝐴’s actual ephemeral key pkA, re-
sulting in a ciphertext 𝑐′ that also decapsulates to key 𝑘 . Since the
adversary knows both lktB and 𝑘1, they can forge 𝐵’s signature on
𝑐′ and create a valid tagB, which they both forward to𝐴, completing
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𝐴’s run. Finally, the adversary creates a valid signature and tag for
𝐵, who thinks they are communicating with the adversary. At the
end of their respective runs, 𝐴 and 𝐵 agree on key 𝑘 but not on
their peers’ identities.

We find that the protocol gives Implicit Key Authentication for
the Initiator when the KEM satisfies at least HON -BIND-𝐾-𝑃𝐾 or
both HON -BIND-𝐾-𝐶𝑇 and HON -BIND-𝐾,𝐶𝑇 -𝑃𝐾 . Note that the
later two, together, imply HON -BIND-𝐾-𝑃𝐾 by Corollary 4.9. Thus,
HON -BIND-𝐾-𝑃𝐾 really is the property that prevents the attack: 𝐼
and 𝑅 deriving the same key 𝑘 implies that they agree on pkI . This
stops the adversary from switching out pkI for their own ephemeral
key, which prevents them from learning the key 𝑘 . However, knowl-
edge of 𝑘 is necessary to create a valid tagI for 𝑅 in the last message.
Thus, the above attack is prevented.

We observe that Σ′0 does not achieve SK-security for any IND-
CCA-secure KEM when the Responder erases pkI from its state and
accepts duplicate session identifiers. We refer the reader to [20]
for a detailed description of the attack.

To summarize, we find that Σ′0 does not achieve Implicit Key Au-
thentication for the Initiator when used with any IND-CCA-secure
KEM due to a re-encapsulation attack, and that SK security does
not hold when the Responder misbehaves as described previously.
A KEM with additional binding properties, e.g., HON -BIND-𝐾-𝑃𝐾
and HON -BIND-𝐶𝑇 -𝐾 , could have prevented these attacks.

6.5 PQ-SPDM
The Security Protocol and Data Model (SPDM) [24] is an emerging
industry standard aimed at ensuring end-to-end trust in infras-
tructure, focusing on hardware and chip-to-chip communication.
Although the standard is being developed by major industry play-
ers, there has been limited cryptographic analysis. Additionally, to
address post-quantum security concerns, post-quantum versions of
SPDM’s session establishment have been proposed by [49, 50]. We
model this proposed post-quantum variant and analyze for both
Initiator and Responder whether the protocol achieves Final Key
Secrecy, Implicit Key Authentication, and Full Key Confirmation. A
detailed description of the (post-quantum) SPDM protocol is out of
scope for this paper; we refer the reader to [23, 49, 50].

We find that, for the Initiator, Final Key Secrecy holds as long
as neither the ephemeral KEM key pair nor the long-term key of
the Responder is revealed. For the Responder, we find that Final
Key Secrecy holds even when the ephemeral KEM key pair is re-
vealed. The Initiator obtains Implicit Key Authentication only if
the ephemeral KEM key pair is not revealed, and the Responder as
long as either the long-term key of the Initiator or the ephemeral
KEM key pair is not revealed.

Full Key Confirmation does not hold for the Initiator if either
key pair is revealed. For the Responder, we find that the property
holds as long as at least one key pair is not revealed.

We find these results across all initial configurations and con-
clude that PQ-SPDM provides these guarantees independently of
any KEM binding properties or maliciously generated keys.

6.6 Kyber-AKE
Wemodel the Kyber-AKE (see Figure 2) in Tamarin and analyze the
protocol, both in terms of secrecy and authentication properties.

The secrecy of the final key of the Kyber-AKE is guaranteed for
both Initiator and Responder as long as the long-term secrets are
not revealed. The property is defined analogously to Definition 6.2.

We also analyze Implicit Key Authentication for both the Ini-
tiator and Responder analogously to Definition 6.1. Without any
additional binding properties, even when we restrict the adversary
to only use honest keys out of KeyGen, Tamarin is able to produce
a counterexample violating the defined property. We call this attack
re-encapsulation attack, as described in Section 3.

We show that, in the setting where we do not allow keys outside
of KeyGen, the used KEM in the Kyber-AKE additionally needs
to provide HON -BIND-𝐾-𝑃𝐾 or both HON -BIND-𝐾-𝐶𝑇 and HON -
BIND-𝐾,𝐶𝑇 -𝑃𝐾 to guarantee implicit authentication for both par-
ties. Analogously, in the stronger adversary model, the used KEM
needs to provide MAL-BIND-𝐾-𝑃𝐾 or both MAL-BIND-𝐾-𝐶𝑇 and
MAL-BIND-𝐾,𝐶𝑇 -𝑃𝐾 to guarantee implicit authentication. Note
that we could show with Corollary 4.9 that 𝑋 -BIND-𝐾-𝐶𝑇 and 𝑋 -
BIND-𝐾,𝐶𝑇 -𝑃𝐾 imply 𝑋 -BIND-𝐾-𝑃𝐾 , confirming that one can pre-
vent that attack by binding the public key to the final key.

This observation also confirms why we do not see this kind of
attack in the original Kyber-AKE, as the Kyber KEM is conjectured
to fulfill these properties (see [20]).

Note that [12] claims the Kyber-AKE is secure in the Canetti-
Krawczyk (CK) model with weak forward secrecy [14]. However,
they state no explicit proof and claim that this “follows directly
from the generic security bounds of [4, 17]”. Our results show that
this statement is incorrect if the KEM is only IND-CCA secure. In
particular, in the CK model with weak PFS, the re-encapsulation
attack would imply that the sessions are not matching, and this
would allow the adversary to reveal the session key at A’s session.

7 RELATEDWORK
In this Section, we give a brief overview of related work. First, we
investigate security notions for KEMs that go beyond IND-CCA
like robustness, which are similar in spirit to our novel binding
properties. Then, we introduce recent related work by Schmieg [48]
and discuss how it relates to this paper.

7.1 Further security notions
While IND-CCA is still the main security notion for KEMs, addi-
tional security notions have been proposed.

The term “robustness” was initially coined by Abdalla, Bellare,
and Neven in [1] in the context of PKE schemes. In a nutshell,
robustness means it is hard to produce a ciphertext that is valid
for two different key pairs (or users). They introduce both weak
(WROB) and strong (SROB) robustness. In the weak robustness
game, an adversary has to find a message𝑚 and two distinct public
keys 𝑝𝑘0 and 𝑝𝑘1 such that encrypting𝑚 with 𝑝𝑘0 results in a valid
ciphertext when decrypted with 𝑠𝑘1, 𝑝𝑘1’s secret key. In the strong
robustness game, the adversary has to find a ciphertext 𝑐 and two
distinct public keys such that 𝑐 decrypts under both corresponding
secret keys. This strengthens the adversary since 𝑐 does not have to
be the result of an honest encryption but could have been specifically
created by the adversary.

In [27], the authors make a case for new, stronger robustness
notions by showing how the notions of [1] fail to prevent attacks
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in certain applications such as fair auction protocols. First, they ob-
serve that the original strong robustness definition does not allow
the adversary to query their oracle with the secret keys of the public
keys they are challenged with; removing this restriction leads to an
intermediate notion that they call unrestricted strong robustness
(USROB). Then, they go on to remove the restriction that the ad-
versary is challenged with honestly generated public keys. Instead,
the adversary is given complete control over the key generation,
and it is up to the decryption algorithm to reject invalid key pairs,
which leads to their full robustness (FROB) notion. The USROB
and FROB notions define robustness via the decryption routine of
a PKE, implicitly assuming that robustness “carries” over to the
encryption algorithm since encryption and decryption are related
through correctness. However, in a setting where the adversary can
freely choose key pairs and ciphertexts, correctness may no longer
hold, since the adversary can feed values from outside the key- and
ciphertext-space into the PKE algorithms. Thus, it is necessary that
the whole cryptosystem satisfies a robustness notion. To capture
this, [27] defines complete robustness (CROB), which challenges
the adversary to find a ciphertext that decrypts under different key
pairs for any combination of encryption and decryption calls.

In [30], Grubbs, Maram, and Paterson define anonymity, robust-
ness, and so-called collision freeness for KEMs, building upon Mo-
hassel’s work [38] that only defined these properties for PKEs. They
investigate whether a PKE constructed via the KEM-DEM paradigm
inherits anonymity and robustness from the underlying KEM. They
show that this is true for explicitly rejecting KEMs. However, for
implicitly rejecting KEMs, this is not the case in general. Since all
NIST PQC finalist KEMs are implicitly rejecting KEMs constructed
via variants of the FO transform [28], they then go on to analyze
how the FO transform lifts robustness and anonymity properties
from a PKE scheme, first to the KEM built via the FO transform and
then to the hybrid PKE scheme obtained via the KEM-DEM para-
digm. They apply their generic analysis of the FO transform to the
NIST PQC finalists Saber [26], Kyber [12], and Classic McEliece [7]
as well as the NIST alternate candidate FrodoKEM [11]. Another
finding of [30] regarding the IND-CCA secure Classic McEliece
scheme will be relevant for our work: for any plaintext 𝑚, they
find that it is possible to construct a single ciphertext 𝑐 that always
decrypts to𝑚 under any Classic McEliece private key.

7.2 MAL-BIND-𝑃-𝑄 in the Wild
In an earlier eprint release of this work, we inspected several promi-
nent KEM schemes regarding their binding properties. One of the
inspected schemes is ML-KEM [40], which is an implicitly rejecting
KEM scheme currently being standardized by NIST. We conjec-
tured that ML-KEMwould satisfy bothMAL-BIND-𝐾-𝑃𝐾 andMAL-
BIND-𝐾-𝐶𝑇 security.

In response to these conjectures, Schmieg [48] reported attacks
on the MAL-BIND-𝐾-𝑃𝐾 and MAL-BIND-𝐾-𝐶𝑇 security of ML-
KEM. For more details, including a discussion of possible miti-
gations for these attacks, we refer readers to the full version of our
paper [20] and Schmieg’s work [48]. We now give a short overview
of the reported attacks.

The attack onMAL-BIND-𝐾-𝐶𝑇 exploits the fact that implemen-
tations of ML-KEM store a hash of the public key, which is needed

to compute the shared secret, inside of the secret key. This is done
to avoid recomputing this hash across decapsulation operations.
While this increases the performance of the KEM, it allows strong
adversaries that can control the secret key for decapsulation–like
the adversary in our MAL properties–to replace the correct hash
with a faulty one. In a nutshell, replacing this hash does not trigger
the FO rejection flow, and the different stored hashes of the public
key lead to different shared secret.

The attack on ML-KEM’sMAL-BIND-𝐾-𝑃𝐾 is very similar to the
previously described attack on MAL-BIND-𝐾-𝐶𝑇 . The difference is
that the adversary now replaces the rejection value 𝑧, which is also
stored inside the secret key. The attack then proceeds as follows:
The adversary creates two secret keys which share a rejection value
𝑧, produces a random ciphertext 𝑐 , and tries to decapsulate 𝑐 with
both secret keys. With high probability, both decapsulation calls
will reject the ciphertext resulting in the same shared secret because
the rejection flow computes the shared secret as a hash of 𝑐 and 𝑧.

To mitigate these attacks, [48] suggests to not cache values like
the hash of the public key and the rejection value 𝑧 inside of the
secret key. Instead, these values should be recomputed whenever
they are needed from their initial seeds, which avoids computations
with malformed secret keys. For more details and a discussion of
these mitigation techniques, we refer to [20, 48].

8 CONCLUSION
We introduced a new family of security notions for KEMs, that
capture relevant binding properties, and we establish a hierachy
within them. We show how our notions capture existing binding
properties like Robustness. KEM schemes that meet our binding
properties are harder to misuse, as they leave fewer pitfalls for
protocol designers.

We develop a novel symbolic KEMmodel for the Tamarin prover
and an analysis methodology that allows us to automatically find
the minimum binding properties a protocol requires of a KEM
to meet its security properties. We evaluate our KEM model in
case studies and find several new attacks and missed proof obli-
gations. Notably, we find a new type of attack, which we call “re-
encapsulation attack”.

Our work is in line with a wider trend of constructing cryp-
tographic primitives that are harder to misuse and offer cleaner
behavior with fewer side-cases. In particular, the guarantees offered
by our properties perform a similar role as exclusive ownership and
message-binding properties of digital signatures and the various
robustness notions defined for authenticated encryption schemes
and public key encryption schemes.

As migration to post-quantum secure protocols progresses in the
next years, we expect many existing protocol designs to be adapted
to use KEMs. Our symbolic protocol analysis approach supports this
transition by attack finding, verification, and requirement discovery.
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